Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis carboxypeptidase

In Section 2 mechanisms of a few enzymes are briefly reviewed as a model. a-Chymotrypsin is one of the well-studied enzymes which has the nature of the nucleophilicity in the catalysis. Carboxypeptidase has the nature of electrophilicity in the catalytic center at which the zinc ion is supported and controlled by the imidazole moiety. Hemochrome has the characteristic of the coordination of imidazole with transition metal ion. [Pg.56]

Living systems contain thousands of different enzymes As we have seen all are structurally quite complex and no sweeping generalizations can be made to include all aspects of enzymic catalysis The case of carboxypeptidase A illustrates one mode of enzyme action the bringing together of reactants and catalytically active functions at the active site... [Pg.1147]

Carboxypeptidases are zinc-containing enzymes that catalyze the hydrolysis of polypeptides at the C-terminal peptide bond. The bovine enzyme form A is a monomeric protein comprising 307 amino acid residues. The structure was determined in the laboratory of William Lipscomb, Harvard University, in 1970 and later refined to 1.5 A resolution. Biochemical and x-ray studies have shown that the zinc atom is essential for catalysis by binding to the carbonyl oxygen of the substrate. This binding weakens the C =0 bond by... [Pg.60]

An artificial metalloenzyme (26) was designed by Breslow et al. 24). It was the first example of a complete artificial enzyme, having a substrate binding cyclodextrin cavity and a Ni2+ ion-chelated nucleophilic group for catalysis. Metalloenzyme (26) behaves a real catalyst, exhibiting turnover, and enhances the rate of hydrolysis of p-nitrophenyl acetate more than 103 fold. The catalytic group of 26 is a -Ni2+ complex which itself is active toward the substrate 1, but not toward such a substrate having no metal ion affinity at a low catalyst concentration. It is appearent that the metal ion in 26 activates the oximate anion by chelation, but not the substrate directly as believed in carboxypeptidase. [Pg.153]

Similar reaction mechanisms, involving general base and metal ion catalysis, in conjunction with an OH nucleophilic attack, have been proposed for thermolysin (Ref. 12) and carboxypeptidase A (Refs. 12 and 13). Both these enzymes use Zn2+ as their catalytic metal and they also have additional positively charged active site residues (His 231 in thermolysin and... [Pg.204]

Carbon atom, 4. See also Atomic orbitals Carbon dioxide hydration, 197-199. See also Carbonic anhydrase Carbonic anhydrase, 197-199,200 Carbonium ion transition state, 154, 159 Carboxypeptidase A, 204-205 Catalysis, general acid, 153,164,169 in carboxypeptidase A, 204-205 free energy surfaces for, 160, 161 in lysozyme, 154... [Pg.229]

Scheme 1. Cooperativity in carboxypeptidase catalysis of amide hydrolysis... Scheme 1. Cooperativity in carboxypeptidase catalysis of amide hydrolysis...
Chemical reactivity and hydrogen bonding 320 Proton-transfer behaviour 321 Intramolecular hydrogen-bond catalysis 344 Enzyme catalysis and hydrogen bonding 354 Chymotrypsin 354 Thermolysin 355 Carboxypeptidase 355 Tyrosyl tRNA synthetase 356 Summary 366 Acknowledgements 367 References 367... [Pg.255]

The three hydrolytic enzymes that have been discussed, a-chymo-trypsin, carboxypeptidase A, and lysozyme, cover a wide range of substrate types and mechanistic possibilities. Formulation of principles which might apply to enzymatic catalysis in general is difficult from such a small sampling, but certain features of the enzymatic and model reactions warrant some comment. [Pg.115]

Zinc proteases carboxypeptidase A and thermolysin have been extensively studied in solution and in the crystal (for reviews, see Matthews, 1988 Christianson and Lipscomb, 1989). Both carboxypeptidase A and thermolysin hydrolyze the amide bond of polypeptide substrates, and each enzyme displays specificity toward substrates with large hydrophobic Pi side chains such as phenylalanine or leucine. The exopeptidase carboxypeptidase A has a molecular weight of about 35K and the structure of the native enzyme has been determined at 1.54 A resolution (Rees et ai, 1983). Residues in the active site which are important for catalysis are Glu-270, Arg-127, (liganded by His-69, His-196, and Glu-72 in bidentate fashion), and the zinc-bound water molecule (Fig. 30). [Pg.322]

Fig. 34. Glu-72- Zn interactions in native carboxypeptidase A and in carboxypep-tidase A-inhibitor complexes (inhibitors have been reviewed by Christianson and Lipscomb, 1989). When substrates or inhibitors bind to the enzyme active site and interact with the zinc ion, the interaction of the metal with Glu-72 tends from bidentate toward uniden-tate coordination. The flexibility of protein-zinc coordination may be an important aspect of catalysis in this system, and the Glu-72->Zn - coordination stereochemistry observed here is consistent with the stereochemical analysis of carboxylate-zinc interactions from the Cambridge Structural Database (Carrell et al., 1988 see Fig. 4). Fig. 34. Glu-72- Zn interactions in native carboxypeptidase A and in carboxypep-tidase A-inhibitor complexes (inhibitors have been reviewed by Christianson and Lipscomb, 1989). When substrates or inhibitors bind to the enzyme active site and interact with the zinc ion, the interaction of the metal with Glu-72 tends from bidentate toward uniden-tate coordination. The flexibility of protein-zinc coordination may be an important aspect of catalysis in this system, and the Glu-72->Zn - coordination stereochemistry observed here is consistent with the stereochemical analysis of carboxylate-zinc interactions from the Cambridge Structural Database (Carrell et al., 1988 see Fig. 4).
Numerous peptides have been prepared starting from trifluoromethylalanine. 31, 120 Cyclopeptides containing a-trifluoromethyl amino acids have also be prepared. Some peptidic coupling performed with other a-trifluoromethyl amino acids involve protease catalysis (subtilisin, a-chymotrypsin, carboxypeptidase Y, trypsin, etc.). ... [Pg.168]

Fig. 2.2.3.S Preferred substrates of Sf HNL. 4-Hydroxy-mandelonitrile and tyrosyl-arginine are the preferred substrates of the main hydroxynitrile lyase activity and the carboxypeptidase side-activity. Since both substrates resemble the aromatic ring of tyrosine, catalysis at the same active site can be assumed. Fig. 2.2.3.S Preferred substrates of Sf HNL. 4-Hydroxy-mandelonitrile and tyrosyl-arginine are the preferred substrates of the main hydroxynitrile lyase activity and the carboxypeptidase side-activity. Since both substrates resemble the aromatic ring of tyrosine, catalysis at the same active site can be assumed.
To elucidate the difference between the enzymatic and nonenzymatic participation of metal ions, it is clearly desirable to be able to compare the effect of a large number of metal ions upon the same reaction both in the presence and absence of the enzyme. For such a study to be feasible it is necessary to work with a metal-activated enzymatic reaction, which will also take place when the metal, but not the enzyme, is omitted. Such a reaction is the decarboxylation of oxaloacetic acid. The mechanism of metal catalysis of this reaction is similar to that assumed for carboxypeptidase, and can be represented as follows (44). [Pg.46]

An important difference between thermolysin and carboxypeptidase leads to the major uncertainty in the mechanism of carboxypeptidase. This difference is that the catalytic carboxylate of carboxypeptidase is far more sterically accessible. The crucial question is whether or not the carboxypeptidase-catalyzed hydrolysis of peptides proceeds via general-base catalysis, as in equation 16.26, or via nucleophilic catalysis, as in 16.27. Early kinetic work concentrated on establishing the participation of the various groups in catalysis. [Pg.581]

The considerable detail to which we now can understand enzyme catalysis is well illustrated by what is known about the action of carboxypeptidase A. This enzyme (Section 25-7B and Table 25-3) is one of the digestive enzymes of the pancreas that specifically hydrolyze peptide bonds at the C-terminal end. Both the amino-acid sequence and the three-dimensional structure of carboxypeptidase A are known. The enzyme is a single chain of 307 amino-acid residues. The chain has regions where it is associated as an a helix and others where it is associated as a /3-pIeated sheet. The prosthetic group is a zinc ion bound to three specific amino acids and one water molecule near the surface of the molecule. The amino acids bound to zinc are His 69, His 196, and Glu 72 the numbering refers to the position of the amino acid along the chain, with the amino acid at the /V-terminus being number l. The zinc ion is essential for the activity of the enzyme and is implicated, therefore, as part of the active site. [Pg.1262]


See other pages where Catalysis carboxypeptidase is mentioned: [Pg.1]    [Pg.64]    [Pg.64]    [Pg.1116]    [Pg.1]    [Pg.64]    [Pg.64]    [Pg.1116]    [Pg.191]    [Pg.205]    [Pg.65]    [Pg.355]    [Pg.80]    [Pg.310]    [Pg.326]    [Pg.332]    [Pg.13]    [Pg.13]    [Pg.86]    [Pg.3]    [Pg.141]    [Pg.474]    [Pg.625]    [Pg.1003]    [Pg.1004]    [Pg.1005]    [Pg.221]    [Pg.236]   
See also in sourсe #XX -- [ Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 , Pg.329 , Pg.330 , Pg.331 , Pg.332 ]




SEARCH



Carboxypeptidase

Carboxypeptidase covalent catalysis

Carboxypeptidases

Ion Catalysis Carboxypeptidase

© 2024 chempedia.info