Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cascade temperature/composition

FIG. 8-36 Block diagram of the cascade co composition disturbance, while L2 would be a change in the cooling water temperature. [Pg.734]

In all these cases the reflux rate is simply set at a safe value, enough to nullify the effects of any possible perturbations in operation. There rarely is any harm in obtaining greater purity than actually is necessary. The cases that are not on direct control of reflux flow rate are (g) is on cascade temperature (or composition) and flow control, (h) is on differential temperature control, and (i) is on temperature control of the HTM flow rate. [Pg.50]

A reliable control of the reaction course can be obtained by isothermal operation. Nevertheless, to maintain a constant reaction medium temperature, the heat exchange system must be able to remove even the maximum heat release rate of the reaction. Strictly isothermal behavior is difficult to achieve due to the thermal inertia of the reactor. However, in actual practice, the reaction temperature (Tr) can be controlled within 2°C, by using a cascade temperature controller (see Section 9.2.3). Isothermal conditions may also be achieved by using reflux cooling (see Section 9.2.3.3), provided the boiling point of the reaction mass does not change with composition. [Pg.159]

Distillate composition can be controlled by a cascade temperature master on the upper part of the column, which manipulates the reflux flow L (left). Similarly, the bottoms composition can be controlled by a cascade temperature master located on the lower half of the column, throttling the reboiler heat input (right). [Pg.242]

Results for the CS3 control structure are given in Figures 12.59-12.61. The dynamics are almost as fast as that of the temperature control, CSl, while eliminating steady-state errors. The results clearly indicate the advantage of temperature/composition cascade control for reactive distillation systems when offset-free composition control is required. [Pg.334]

Three control structures are considered here one-temperature control, two-temperature control, and temperature/composition cascade control. The control objective is to keep the product purity at 98 mol% at both ends. [Pg.342]

In summary, one-temperature, one-composition control is recommended for the BuAc system, in which steady-state error can be eliminated without sacrificing closed-loop dynamics. For the AmAc system, we observed limited operability (Fig. 13.13c) when composition control is applied. For the MeAc system, composition control leads to a large peak error and oscillatory response. Therefore, a tradeoff has to be made between the off-spec acetate composition and poor control performance. An alternative is to use a temperature/composition cascade to solve this problem (e.g., CS3 in Figs. 12.58 and 12.84). As for the EtAc and IPAc systems, composition control provides little improvement in terms of the steady-state error. [Pg.385]

Figure 16.44 Load responses for +20% production rate changes using temperature/composition cascade control (CS3) in product purity loop. Figure 16.44 Load responses for +20% production rate changes using temperature/composition cascade control (CS3) in product purity loop.
More than 7.5 MW could be added from a hot utility to the first interval, but the objective is to find the minimum hot and cold utility. Thus from Fig. 6.186, QHmin = 7.5MW and Qcmm = 10MW. This corresponds with the values obtained from the composite curves in Fig. 6.5a. One further important piece of information can be deduced from the cascade in Fig. 6.186. The point where the heat flow goes to zero at T = 145°C corresponds to the pinch. Thus the actual hot and cold stream pinch temperatures are 150 and 140°C. Again, this agrees with the result from the composite curves in Fig. 6.5a. [Pg.179]

The grand composite curve is obtained by plotting the problem table cascade. A typical grand composite curve is shown in Fig. 6.24. It shows the heat flow through the process against temperature. It should be noted that the temperature plotted here is shifted temperature T and not actual temperature. Hot streams are represented ATn,in/2 colder and cold streams AT iJ2 hotter than they are in practice. Thus an allowance for ATj in is built into the construction. [Pg.185]

Figure 6.30 shows the grand composite curve plotted from the problem table cascade in Fig. 6.186. The starting point for the flue gas is an actual temperature of 1800 C, which corresponds to a shifl ed temperature of (1800 — 25) = mS C on the grand composite curve. The flue gas profile is not restricted above the pinch and can be cooled to pinch temperature corresponding to a shifted temperature of 145 C before venting to the atmosphere. The actual stack temperature is thus 145 + 25= 170°C. This is just above the acid dew point of 160 C. Now calculate the fuel consumption ... Figure 6.30 shows the grand composite curve plotted from the problem table cascade in Fig. 6.186. The starting point for the flue gas is an actual temperature of 1800 C, which corresponds to a shifl ed temperature of (1800 — 25) = mS C on the grand composite curve. The flue gas profile is not restricted above the pinch and can be cooled to pinch temperature corresponding to a shifted temperature of 145 C before venting to the atmosphere. The actual stack temperature is thus 145 + 25= 170°C. This is just above the acid dew point of 160 C. Now calculate the fuel consumption ...
Both control schemes react in a similar manner to disturbances in process fluid feed rate, feed temperature, feed composition, fuel gas heating value, etc. In fact, if the secondary controller is not properly tuned, the cascade control strategy can actually worsen control performance. Therefore, the key to an effective cascade control strategy is the proper selection of the secondary controlled variable considering the source and impact of particular disturbances and the associated process dynamics. [Pg.70]

Comparing the composite curve, Figure 3.22, with Figure 3.237 shows that the heat introduced to the cascade is the minimum hot utility requirement and the heat removed at the bottom is the minimum cold utility required. The pinch occurs in Figure 3.23b where the heat flow in the cascade is zero. This is as would be expected from the rule that for minimum utility requirements no heat flows across the pinch. In Figure 3.23b the pinch temperatures are 80 and 90°C, as was found using the composite stream curves. [Pg.117]

Figure 5.22. (e) Batch distillation, reflux flow cascaded with temperature to maintain constant top composition... [Pg.235]

The synergism of a dual-catalyst system comprising of Pt/ZSM-12 and H-Beta aiming to improve the benzene product purity during transalkylation of aromatics has been studied. Catalyst compositions of the dual-catalyst system were optimized at various reaction temperatures in terms of benzene product purity and premium product yields. Accordingly, a notable improvement in benzene purity at 683 K that meets the industrial specification was achieved using the cascade dual-bed catalyst. [Pg.429]

Figure 11.3d shows a process where the manipulated variable affects the two controlled variables and in parallel. An important example is in distilla tion column control where reflux flow aSecte both distillate composition and a tray temperature. The process has a parallel structure and this leads to a parallel cascade control system. [Pg.382]

In this case, the typical CSTR control structure is as shown in Figure 9, with a single-loop control of the composition and a cascade control of the temperature. The block diagram is shown in Figure 10. [Pg.20]

Figure 3.14. The lower ends of fractionators, (a) Kettle reboiler. The heat source may be on TC of either of the two locations shown or on flow control, or on difference of pressure between key locations in the tower. Because of the built-in weir, no LC is needed. Less head room is needed than with the thermosiphon reboiler, (b) Thermosiphon reboiler. Compared with the kettle, the heat transfer coefficient is greater, the shorter residence time may prevent overheating of thermally sensitive materials, surface fouling will be less, and the smaller holdup of hot liquid is a safety precaution, (c) Forced circulation reboiler. High rate of heat transfer and a short residence time which is desirable with thermally sensitive materials are achieved, (d) Rate of supply of heat transfer medium is controlled by the difference in pressure between two key locations in the tower, (e) With the control valve in the condensate line, the rate of heat transfer is controlled by the amount of unflooded heat transfer surface present at any time, (f) Withdrawal on TC ensures that the product has the correct boiling point and presumably the correct composition. The LC on the steam supply ensures that the specified heat input is being maintained, (g) Cascade control The set point of the FC on the steam supply is adjusted by the TC to ensure constant temperature in the column, (h) Steam flow rate is controlled to ensure specified composition of the PF effluent. The composition may be measured directly or indirectly by measurement of some physical property such as vapor pressure, (i) The three-way valve in the hot oil heating supply prevents buildup of excessive pressure in case the flow to the reboiier is throttled substantially, (j) The three-way valve of case (i) is replaced by a two-way valve and a differential pressure controller. This method is more expensive but avoids use of the possibly troublesome three-way valve. Figure 3.14. The lower ends of fractionators, (a) Kettle reboiler. The heat source may be on TC of either of the two locations shown or on flow control, or on difference of pressure between key locations in the tower. Because of the built-in weir, no LC is needed. Less head room is needed than with the thermosiphon reboiler, (b) Thermosiphon reboiler. Compared with the kettle, the heat transfer coefficient is greater, the shorter residence time may prevent overheating of thermally sensitive materials, surface fouling will be less, and the smaller holdup of hot liquid is a safety precaution, (c) Forced circulation reboiler. High rate of heat transfer and a short residence time which is desirable with thermally sensitive materials are achieved, (d) Rate of supply of heat transfer medium is controlled by the difference in pressure between two key locations in the tower, (e) With the control valve in the condensate line, the rate of heat transfer is controlled by the amount of unflooded heat transfer surface present at any time, (f) Withdrawal on TC ensures that the product has the correct boiling point and presumably the correct composition. The LC on the steam supply ensures that the specified heat input is being maintained, (g) Cascade control The set point of the FC on the steam supply is adjusted by the TC to ensure constant temperature in the column, (h) Steam flow rate is controlled to ensure specified composition of the PF effluent. The composition may be measured directly or indirectly by measurement of some physical property such as vapor pressure, (i) The three-way valve in the hot oil heating supply prevents buildup of excessive pressure in case the flow to the reboiier is throttled substantially, (j) The three-way valve of case (i) is replaced by a two-way valve and a differential pressure controller. This method is more expensive but avoids use of the possibly troublesome three-way valve.

See other pages where Cascade temperature/composition is mentioned: [Pg.314]    [Pg.285]    [Pg.334]    [Pg.352]    [Pg.207]    [Pg.747]    [Pg.1275]    [Pg.2070]    [Pg.373]    [Pg.373]    [Pg.540]    [Pg.542]    [Pg.870]    [Pg.115]    [Pg.42]    [Pg.51]    [Pg.56]    [Pg.573]    [Pg.88]    [Pg.119]    [Pg.120]    [Pg.139]   
See also in sourсe #XX -- [ Pg.285 , Pg.334 , Pg.345 , Pg.485 ]




SEARCH



Cascade temperature

Composite temperature

© 2024 chempedia.info