Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carrier - diffusion transport

The bipolar junction transistor (BIT) consists of tliree layers doped n-p-n or p-n-p tliat constitute tire emitter, base and collector, respectively. This stmcture can be considered as two back-to-back p-n junctions. Under nonnal operation, tire emitter-base junction is forward biased to inject minority carriers into tire base region. For example, tire n type emitter injects electrons into a p type base. The electrons in tire base, now minority carriers, diffuse tlirough tire base layer. The base-collector junction is reverse biased and its electric field sweeps tire carriers diffusing tlirough tlie base into tlie collector. The BIT operates by transport of minority carriers, but botli electrons and holes contribute to tlie overall current. [Pg.2891]

The amorphous orientation is considered a very important parameter of the microstructure of the fiber. It has a quantitative and qualitative effect on the fiber de-formability when mechanical forces are involved. It significantly influences the fatigue strength and sorptive properties (water, dyes), as well as transport phenomena inside the fiber (migration of electric charge carriers, diffusion of liquid). The importance of the amorphous phase makes its quantification essential. Indirect and direct methods currently are used for the quantitative assessment of the amorphous phase. [Pg.847]

Another way to measure the Vhi is by means of photovoltaic measurements [97, 113. The technique is based on the fact that, at near zero applied bias, the OLED acts as a photovoltaic cell, where photogencraled carriers drift under the influence of Vhi to produce a current in an external cireuit. In a way similar to electroabsorption, an external bias is applied in order to compensate the built-in potential and null the net pholocurrent (Fig. 13-6). However, it has been shown that the measurement produces accurate results only at low temperatures, where diffusive transport of charges that are phoiogcneraled at the interlaces is negligible [97]. [Pg.541]

The analytic theory outlined above provides valuable insight into the factors that determine the efficiency of OI.EDs. However, there is no completely analytical solution that includes diffusive transport of carriers, field-dependent mobilities, and specific injection mechanisms. Therefore, numerical simulations have been undertaken in order to provide quantitative solutions to the general case of the bipolar current problem for typical parameters of OLED materials [144—1481. Emphasis was given to the influence of charge injection and transport on OLED performance. 1. Campbell et at. [I47 found that, for Richardson-Dushman thermionic emission from a barrier height lower than 0.4 eV, the contact is able to supply... [Pg.545]

Postma and Stock [81] showed that HPr or E-I mutants were unable to grow on PTS carbohydrates suggesting that transport without phosphorylation did not take place in apparent contradiction with the studies presented above. The explanation may be that facilitated diffusion via PTS carriers is observed only in abnormal situations, carbohydrate being transported by the incorrect PTS carrier (galactose via the mannose carrier) or transport via a mutated carrier. Efflux, which also reflects facilitated diffusion, is more common for PTS carriers. [Pg.156]

Hilgendorf, C. Spahn-Langguth,H. Regardh,C. G. Lipka, E. Amidon,G. L. Langguth, P., Caco-2 vs Caco-2/HT29-MTX co-cultured cell lines Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport, J. Pharm. Sci. 89, 63-75 (2000). [Pg.284]

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
Molecules with a large molecular weight or size are confined to the transcellular route and its requirements related to the hydrophobicity of the molecule. The transcellular pathway has been evaluated for many years and is thought to be the main route of absorption of many drugs, both with respect to carrier-mediated transport and passive diffusion. The most well-known requirement for the passive part of this route is hydrophobicity, and a relationship between permeability coefficients across cell monolayers such as the Caco-2 versus log P and log D 7.4 or 6.5 have been established [102, 117]. However, this relationship appears to be nonlinear and reaches a plateau at around log P of 2, while higher lipophilicities result in reduced permeability [102, 117, 118]. Because of this, much more attention has recently been paid towards molecular descriptors other than lipophilicity [86, 119-125] (see section 5.5.6.). The relative contribution between the para-cellular and transcellular components has also been evaluated using Caco-2 cells, and for a variety of compounds with different charges [110, 112] and sizes [112] (see Section 5.4.5). [Pg.113]

Carrier-mediated transport, Active Efflux, Passive (trans and para cellular) diffusion... [Pg.430]

The ex vivo methods lend themselves easily for the performance of mechanistic investigations. In order to optimize selection of drug candidates prior to further clinical development, it is important to decipher the contributive roles of permeation, metabolism, efflux, and toxicity. This will then make it possible to properly channel the optimization process, for instance, by permeation enhancement, mucoadhesion, modification of the physicochemical characteristics of the drug, or even change in the route of administration in case the drug and/or formulation turns out to be too toxic. Regarding permeability studies, it is possible not only to quantify passive diffusion but also to identify and characterize (compound)-specific carrier-mediated transport routes. These tools have been used to identify and characterize the relative contribution of... [Pg.115]

This refers to the transport across the epithelial cells, which can occur by passive diffusion, carrier-mediated transport, and/or endocytic processes (e.g., transcytosis). Traditionally, the transcellular route of nasal mucosa has been simply viewed as primarily crossing the lipoidal barrier, in which the absorption of a drug is determined by the magnitude of its partition coefficient and molecular size. However, several investigators have reported the lack of linear correlation between penetrant lipophilicity and permeability [9], which implies that cell membranes of nasal epithelium cannot be regarded as a simple lipoidal barrier. Recently, compounds whose transport could not be fully explained by passive simple diffusion have been investigated to test if they could be utilized as specific substrates for various transporters which have been identified in the... [Pg.221]

The major pathway of drug transport across buccal mucosa seems to follow simple Fickian diffusion [17]. Passive diffusion occurs in accordance with the pH-partition theory. Considerable evidence also exists in the literature regarding the presence of carrier-mediated transport in the buccal mucosa [18,19]. Examination of Eq. (1) for drug flux,... [Pg.197]

The following compilation is restricted to the transport coefficients of protonic charge carriers, water, and methanol. These may be represented by a 3 X 3 matrix with six independent elements if it is assumed that there is just one mechanism for the transport of each species and their couplings. However, as discussed in Sections 3.1.2.1 and 3.2.1, different types of transport occur, i.e., diffusive transport as usually observed in the solid state and additional hydrodynamic transport (viscous flow), especially at high degrees of solvation. Assuming that the total fluxes are simply the sum of diffusive and hydrodynamic components, the transport matrix may... [Pg.427]


See other pages where Carrier - diffusion transport is mentioned: [Pg.88]    [Pg.297]    [Pg.233]    [Pg.539]    [Pg.427]    [Pg.186]    [Pg.358]    [Pg.156]    [Pg.170]    [Pg.172]    [Pg.173]    [Pg.246]    [Pg.251]    [Pg.508]    [Pg.50]    [Pg.53]    [Pg.102]    [Pg.86]    [Pg.281]    [Pg.485]    [Pg.486]    [Pg.486]    [Pg.492]    [Pg.181]    [Pg.265]    [Pg.94]    [Pg.117]    [Pg.185]    [Pg.219]    [Pg.145]    [Pg.95]    [Pg.421]    [Pg.284]    [Pg.340]   
See also in sourсe #XX -- [ Pg.143 , Pg.174 , Pg.393 ]




SEARCH



Carrier - diffusion

Carriers carrier transport

Diffusion transporters

Transport diffusive

© 2024 chempedia.info