Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cardiovascular disease antioxidant effects

The above scientific information on rice bran phytochemicals indicates that a multitude of mechanisms are operating at the cellular level to bring about specific health effects. Several health benefits of rice bran appear to be the result of the synergistic function of the many phytochemicals, antioxidants, vitamins and minerals which operates through a specific immune response. Their role in the biochemical mechanisms at the cellular level which result in major health effects is shown in Fig. 17.1. A short overview summarizing the effect of the various phytochemicals on major health issues such as cancer, immune function, cardiovascular disease, diabetes, altered liver function and gastrointestinal and colon disease will be given below. [Pg.363]

Many epidemiological studies have analyzed the correlations between different carotenoids and the various forms of cancer and a lot of conclusions converge toward protective effects of carotenoids. Many studies were carried out with (i-carotene. The SUVIMAX study, a primary intervention trial of the health effects of antioxidant vitamins and minerals, revealed that a supplementation of p-carotene (6 mg/day) was inversely correlated with total cancer risk. Intervention studies investigating the association between carotenoids and different types of cancers and cardiovascular diseases are reported in Table 3.1.2 and Table 3.1.3. [Pg.129]

In the Unites States, the daily intake of 3-carotene is around 2 mg/day Several epidemiological studies have reported that consumption of carotenoid-rich foods is associated with reduced risks of certain chronic diseases such as cancers, cardiovascular disease, and age-related macular degeneration. These preventive effects of carotenoids may be related to their major function as vitamin A precursors and/or their actions as antioxidants, modulators of the immune response, and inducers of gap-junction communications. Not all carotenoids exert similar protective effects against specific diseases. By reason of the potential use of carotenoids as natural food colorants and/or for their health-promoting effects, research has focused on better understanding how they are absorbed by and metabolized in the human body. [Pg.161]

Perez-Jimenez J, Serrano J, Tabernero M, Arranz S, Diaz-Rubio ME, Garcia-Diz L, Goni I and Saura-Calixto F. 2008. Effects of grape antioxidant dietary fiber on cardiovascular disease risk factors. Nutrition 24 646-653. [Pg.233]

It has been already pointed out that nitric oxide exhibits antioxidant effect in LDL oxidation at the NO/ 02 ratio 1. Under these conditions the antioxidant effect of NO prevails on the prooxidant effect of peroxynitrite. Although some earlier studies suggested the possibility of NO-mediated LDL oxidation [152,153], these findings were not confirmed [154]. On the other hand, at lower values of N0/02 ratio the formed peroxynitrite becomes an efficient initiator of LDL modification. Beckman et al. [155] suggested that peroxynitrite rapidly reacts with tyrosine residues to form 3-nitrotyrosine. Later on, Leeuwenburgh et al. [156] found that 3-nitrotyrosine was formed in the reaction of peroxynitrite with LDL. The level of 3-nitrotyrosine sharply differed for healthy subjects and patients with cardiovascular diseases LDL isolated from the plasma of healthy subjects contained a very low level of 3-nitrotyrosine (9 + 7 pmol/mol 1 of tyrosine), while LDL isolated from aortic atherosclerotic intima had a 90-fold higher level (840 + 140 pmol/moD1 of tyrosine). It has been proposed that peroxynitrite formed in the human artery wall is able to promote LDL oxidation in vivo. [Pg.795]

As in the case of other cardiovascular diseases, the possibility of antioxidant treatment of diabetes mellitus has been studied in both animal models and diabetic patients. The treatment of streptozotocin-induced diabetic rats with a-lipoic acid reduced superoxide production by aorta and superoxide and peroxynitrite formation by arterioles providing circulation to the region of the sciatic nerve, suppressed lipid peroxidation in serum, and improved lens glutathione level [131]. In contrast, hydroxyethyl starch desferrioxamine had no effect on the markers of oxidative stress in diabetic rats. Lipoic acid also suppressed hyperglycemia and mitochondrial superoxide generation in hearts of glucose-treated rats [132],... [Pg.925]

Carotenoids are isoprenoid compounds that are biosynthesized only by plants and microorganisms. Some carotenoids (a- and p-carotene, p-cryptoxanthine) can be cleaved into vitamin A (retinol) by an enzyme in the small intestine. Carotenoids have been reported to present some effects in the prevention of cardiovascular diseases [410] and in the prevention of some kind of cancers [411]. Furthermore, antioxidant activity has been widely reported [411-414] but a switch to pro-oxidant activity can occur as a function of oxygen concentration [415,416]. [Pg.608]

The role of the antioxidant properties of vitamins C, E, and p-carotene in the prevention of cardiovascular disease has been the focus of several recent studies. Antioxidants reduce the oxidation of low-density lipoproteins, which may play a role in the prevention of atherosclerosis. However, an inverse relationship between the intake or plasma levels of these vitamins and the incidence of coronary heart disease has been found in only a few epidemiological studies. One study showed that antioxidants lowered the level of high-density lipoprotein 2 and interfered with the effects of lipid-altering therapies given at the same time. While many groups recommend a varied diet rich in fruits and vegetables for the prevention of coronary artery disease, empirical data do not exist to recommend antioxidant supplementation for the prevention of coronary disease. [Pg.781]

NO also reduces endothelial adhesion of monocytes and leukocytes, key features of the early development of atheromatous plaques. This effect is due to the inhibitory effect of NO on the expression of adhesion molecules on the endothelial surface. In addition, NO may act as an antioxidant, blocking the oxidation of low-density lipoproteins and thus preventing or reducing the formation of foam cells in the vascular wall. Plaque formation is also affected by NO-dependent reduction in endothelial cell permeability to lipoproteins. The importance of eNOS in cardiovascular disease is supported by experiments showing increased atherosclerosis in animals deficient in eNOS by pharmacologic inhibition. Atherosclerosis risk factors, such as smoking, hyperlipidemia, diabetes, and hypertension, are associated with decreased endothelial NO production, and thus enhance atherogenesis. [Pg.422]

Resveratrol has also been reported to offer protection against cardiovascular disease, such as coronary heart disease. The effects of resveratrol on factors implicated in the development of coronary heart disease - human platelet aggregation and the synthesis of eicosanoids (lipids) from arachidonate by platelets - were investigated and compared with the actions of other wine phenolics - catechin (1.39), epicatechin (7.18a), and quercetin (1.43) - and the antioxidants a-tocopherol (7.10a), hydroquinone and butylated hydroxytoluene. Resveratrol and quercetin demonstrated a dose-dependent inhibition of platelet aggregation, whereas the other compounds tested were inactive. Resveratrol also inhibited the synthesis of the eicosanoids in a dose-dependent manner, whereas the other phenolics were less effective of not effective at all. Removal of the alcohol from the wine did not diminish the effect on platelet aggregation (Pace-Asciak et al., 1995 Goldberg et al., 1995). [Pg.247]


See other pages where Cardiovascular disease antioxidant effects is mentioned: [Pg.933]    [Pg.934]    [Pg.189]    [Pg.151]    [Pg.36]    [Pg.137]    [Pg.320]    [Pg.348]    [Pg.386]    [Pg.597]    [Pg.34]    [Pg.88]    [Pg.369]    [Pg.131]    [Pg.155]    [Pg.156]    [Pg.162]    [Pg.164]    [Pg.230]    [Pg.852]    [Pg.889]    [Pg.181]    [Pg.353]    [Pg.354]    [Pg.140]    [Pg.101]    [Pg.311]    [Pg.378]    [Pg.396]    [Pg.443]    [Pg.455]    [Pg.473]    [Pg.411]    [Pg.853]    [Pg.890]    [Pg.48]    [Pg.211]    [Pg.32]    [Pg.597]    [Pg.244]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Cardiovascular disease

Cardiovascular disease effect

Disease effects

© 2024 chempedia.info