Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cardiac muscle mechanical activity

Phosphodiesterase Inhibitors. Because of the complexity of the biochemical processes involved in cardiac muscle contraction, investigators have looked at these pathways for other means of dmg intervention for CHF. One of the areas of investigation involves increased cycHc adenosine monophosphate [60-92-4] (cAMP) through inhibition of phosphodiesterase [9025-82-5] (PDE). This class of compounds includes amrinone, considered beneficial for CHF because of positive inotropic and vasodilator activity. The mechanism of inotropic action involves the inhibition of PDE, which in turn inhibits the intracellular hydrolysis of cAMP (130). In cascade fashion, cAMP-catalyzed phosphorylation of sarcolemmal calcium-channels follows, activating the calcium pump (131). A series of synthetic moieties including the bipyridines, amrinone and milrinone, piroximone and enoximone, [77671-31-9], C22H22N2O2S, all of which have been shown to improve cardiac contractiUty in short-term studies, were developed (132,133). These dmgs... [Pg.129]

Modern representations of the virtual heart, therefore, describe structural aspects like fibre orientation in cardiac muscle, together with the distribution of various cell types, active and passive electrical and mechanical properties, as well as the coupling between cells. This then allows accurate reproduction of the spread of the electrical wave, subsequent contraction of the heart, and effects on blood pressure, coronary perfusion, etc. It is important to point out, here, that all these parameters are closely interrelated, and changes in any one of them influence the behaviour of all others. This makes for an exceedingly complex system. [Pg.137]

The self-phosphorylation process catalyzed by many protein kinases as part of the regulatory mechanism for their own activation. Because true autophosphorylation is a unimolecular reaction involving enzyme both as catalyst and phosphoryl acceptor, the fraction of autophosphory-lated enzyme at any time after addition of ATP (or another phosphoryl donor) will be independent of the initial concentration of the enzyme. This criterion was first applied to the autophosphorylation of cardiac muscle cyclic AMP-stimulated protein kinase, now designated protein kinase A (PKA). At a fixed concentration of MgATP , the fraction of autophosphorylated protein will follow the first-order rate laws, [A]/[A ] where k is a first-order rate constant. [Pg.75]

Mechanism of Action Competitive inhibitors of the muscarinic actions of acetylcholine, acting at receptors located in exocrine glands, smooth and cardiac muscle, and intramural neurons. Composed of 3 main constituents atropine, scopolamine, and hyoscyamine. Scopolamine exerts greater effects on the CNS, eye, and secretory glands than the constituents atropine and hyoscyamine. Atropine exerts more activity on the heart, intestine, and bronchial muscle and exhibits a more prolonged duration of action compared to scopolamine. Hyoscyamine exerts similar actions to atropine but has more potent central and peripheral nervous system effects. TherapeuticEffect Peripheral anticholinergic and antispasmodic action, mild sedation. Pharmacokinetics None known... [Pg.121]

Mechanism of Action A cardiac inotropic agent that increases the influx of calcium from extracellular to intracellular cytoplasm. Therapeutic Effect Potentiates the activity of the contractile cardiac muscle fibers and increases the force of myocardial contraction. Slows the heart rate by decreasing conduction through the SA and AV nodes. Pharmacokinetics ... [Pg.368]

Direct effects on the heart are determined largely by Bi receptors, although B2 and to a lesser extent a receptors are also involved, especially in heart failure. Beta-receptor activation results in increased calcium influx in cardiac cells. This has both electrical and mechanical consequences. Pacemaker activity—both normal (sinoatrial node) and abnormal (eg, Purkinje fibers)—is increased (positive chronotropic effect). Conduction velocity in the atrioventricular node is increased (positive dromotropic effect), and the refractory period is decreased. Intrinsic contractility is increased (positive inotropic effect), and relaxation is accelerated. As a result, the twitch response of isolated cardiac muscle is increased in tension but abbreviated in duration. In the intact heart, intraventricular pressure rises and falls more rapidly, and ejection time is decreased. These direct effects are easily demonstrated in the absence of reflexes evoked by changes in blood pressure, eg, in isolated myocardial preparations and in patients with ganglionic blockade. In the presence of normal reflex activity, the direct effects on heart rate may be dominated by a reflex response to blood pressure changes. Physiologic stimulation of the heart by catecholamines tends to increase coronary blood flow. [Pg.184]

Recently, both hirsutine (85) and dihydrocorynantheine (86) were found to be active when the effects of these compounds on the action potentials of sino-atrial node, atrium and ventricle tissues were studied with standard microelectrode techniques [65]. In sino-atrial node preparations, both compounds concentration-dependently increased cycle length, decreased the slope of the pacemaker depolarization, decreased the maximum rate of rise and prolonged action potential duration. Thus, it was for the first time shown that hirsutine and dihydrocorynantheine have direct inhibitory effects on the cardiac pacemaker. In atrial and ventricular preparations, both compounds concentration-dependently decreased the maximum rate of rise and prolonged action potential duration. Although stereochemically different, these two alkaloids exhibited no difference in their effects on various myocardial action potential parameters. Dihydrocorynantheine also displays potent a-adrenoceptor blocking activity, while hirsutine is inactive [66]. Experiments with ion channels indicate that the mechanisms for these two phenomena probably differ. The direct effects of hirsutine and dihydrocorynantheine on the action potential of cardiac muscle through inhibition of multiple ion channels may explain the negative chronotropic and antiarrhythmic activities of these two alkaloids. [Pg.32]

An enhancement of ATPase action comes through the phosphorylation of myosin light chains (MW 18,000). The phosphorylation is achieved because the high cellular [Ca2+] activates myosin kinase, an enzyme that contains calmodulin, a Ca2+-binding subunit. Phosphorylation of myosin is absolutely required for smooth muscle contraction, though not for the contraction of skeletal or cardiac muscle, because smooth muscle has no troponin. Thus, whereas contraction and relaxation in skeletal and cardiac muscle are achieved principally via the action of Ca2+ on troponin, in smooth muscle they must depend solely on the Ca2+-dependent phosphorylation of myosin. In skeletal and cardiac muscle, once the stimulus to the sarcolemma is removed, [Ca2+] in sarcoplasm drops rapidly back to 10 7 or 10 8 M via various Ca2+ pump mechanisms present in the sarcoplasmic reticulum, and tropomyosin can once again interfere with the myosin-actin interaction. [Pg.213]

Cardiac muscle cells are normally depolarised by the fast inward flow of sodium ions, following which there is a slow inward flow of calcium ions through the L-type calcium channels (phase 2, in Fig. 24.1) the consequent rise in free intracellular calcium ions activates the contractile mechanism. [Pg.504]

In the myocardium, automaticity is the ability of the cardiac muscle to depolarize spontaneously (i.e., without external electrical stimulation from the autonomic nervous system). This spontaneous depolarization is due to the plasma membrane within the heart that has reduced permeability to potassium (K+) but still allows passive transfer of calcium ions, allowing a net charge to build. Automaticity is most often demonstrated in the sinoatrial (SA) node, the so-called pacemaker cells. Abnormalities in automaticity result in rhythm changes. The mechanism of automaticity involves the pacemaker channels of the HCN (Hyperpolarization-activated, Cyclic Nucleotide-gated) family14 (e.g., If, "funny" current). These poorly selective cation channels conduct more current as the membrane potential becomes more negative, or hyperpolarized. They conduct both potassium and sodium ions. The activity of these channels in the SA node cells causes the membrane potential to slowly become more positive (depolarized) until, eventually, calcium channels are activated and an action potential is initiated. [Pg.37]


See other pages where Cardiac muscle mechanical activity is mentioned: [Pg.85]    [Pg.66]    [Pg.941]    [Pg.944]    [Pg.376]    [Pg.1023]    [Pg.1026]    [Pg.1006]    [Pg.1009]    [Pg.48]    [Pg.91]    [Pg.190]    [Pg.1]    [Pg.110]    [Pg.126]    [Pg.193]    [Pg.88]    [Pg.105]    [Pg.225]    [Pg.123]    [Pg.190]    [Pg.122]    [Pg.232]    [Pg.163]    [Pg.296]    [Pg.54]    [Pg.268]    [Pg.397]    [Pg.403]    [Pg.242]    [Pg.243]    [Pg.211]    [Pg.49]    [Pg.48]    [Pg.494]    [Pg.627]    [Pg.477]    [Pg.478]    [Pg.263]    [Pg.279]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]




SEARCH



Activation mechanism

Cardiac muscle

Mechanical activity

Muscle activation

Muscle activity

Muscle mechanics

Muscle mechanism

© 2024 chempedia.info