Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halo carboxylic acids

Formation of Acyl Halides from Carboxylic Acids Halo-de-hydroxylation... [Pg.437]

Instead of a, -unsaturated carboxylic acids, / -halo carboxylic acids (171) and -propio lactones may also be used (137,141). [Pg.166]

One of the oldest methods for the synthesis of ammo acids dates back to the nineteenth century and is simply a nucleophilic substitution m which ammonia reacts with an a halo carboxylic acid... [Pg.1121]

Azetidine, 7V-bromo-, 7, 240 Azetidine, AT-r-butyl- N NMR, 7, 11 Azetidine, AT-t-butyl-3-chloro-transannular nucleophilic attack, 7, 25 Azetidine, 3-chloro-isomerization, 7, 42 Azetidine, AT-chloro-, 7, 240 dehydrohalogenation, 7, 275 Azetidine, 7V-chloro-2-methyl-inversion, 7, 7 Azetidine, 3-halo-synthesis, 7, 246 Azetidine, AT-halo-synthesis, 7, 246 Azetidine, AT-hydroxy-synthesis, 7, 271 Azetidine, 2-imino-stability, 7, 256 Azetidine, 2-methoxy-synthesis, 7, 246 Azetidine, 2-methyl-circular dichroism, 7, 239 optical rotatory dispersion, 7, 239 Azetidine, AT-nitroso-deoxygenation, 7, 241 oxidation, 7, 240 synthesis, 7, 246 Azetidine, thioacyl-ring expansion, 7, 241 Azetidine-4-carboxylic acid, 2-oxo-oxidative decarboxylation, 7, 251 Azetidine-2-carboxylic acids absolute configuration, 7, 239 azetidin-2-ones from, 7, 263 synthesis, 7, 246... [Pg.525]

Another example is the acidities of a series of carboxylic acids. It is known that the substitution effect on these compounds also depends on the environment. The behavior of the halo-substituted acetic acids is one of the prototype problems for the solvent effect on acidity The order in strength of the haloacetic acids in the gas phase is... [Pg.430]

Figure 7 Free energy changes of halo-substituted carboxyl acid in aqueous solution upon deproto-nation referred to acetic acid. Figure 7 Free energy changes of halo-substituted carboxyl acid in aqueous solution upon deproto-nation referred to acetic acid.
Participation of fluorocarbocations, derived from carboxylic acids and from halo acetones, in reactions of carbonyl compounds with sulfur tetrafluoride has been directly evidenced by trapping them with aromatic hydrocarbons [207, 20S],... [Pg.243]

Nucleophilic substitution by ammonia on a-halo acids (Section 19.16) The a-halo acids obtained by halogenation of carboxylic acids under conditions of the Hell-Volhard-Zelinsky reaction are reactive substrates in nucleophilic substitution processes. A standard method for the preparation of a-amino acids is displacement of halide from a-halo acids by nucleophilic substitution using excess aqueous ammonia. [Pg.928]

Ion 21 can either lose a proton or combine with chloride ion. If it loses a proton, the product is an unsaturated ketone the mechanism is similar to the tetrahedral mechanism of Chapter 10, but with the charges reversed. If it combines with chloride, the product is a 3-halo ketone, which can be isolated, so that the result is addition to the double bond (see 15-45). On the other hand, the p-halo ketone may, under the conditions of the reaction, lose HCl to give the unsaturated ketone, this time by an addition-elimination mechanism. In the case of unsymmetrical alkenes, the attacking ion prefers the position at which there are more hydrogens, following Markovnikov s rule (p. 984). Anhydrides and carboxylic acids (the latter with a proton acid such as anhydrous HF, H2SO4, or polyphosphoric acid as a catalyst) are sometimes used instead of acyl halides. With some substrates and catalysts double-bond migrations are occasionally encountered so that, for example, when 1 -methylcyclohexene was acylated with acetic anhydride and zinc chloride, the major product was 6-acetyl-1-methylcyclohexene. ... [Pg.784]

Similar additions have been successfully carried out with carboxylic acids, anhydrides, acyl halides, carboxylic esters, nitriles, and other types of compounds. These reactions are not successful when the alkene contains electron-withdrawing groups such as halo or carbonyl groups. A free-radical initiator is required, usually peroxides or UV light. The mechanism is illustrated for aldehydes but is similar for the other compounds ... [Pg.1034]

Pyrolysis of carboxylic acids Dehydrohalogenation of acyl halides Dehalogenation of a-halo acyl halides Rearrangement of diazo ketones (Wolff)... [Pg.1677]

The subjects of this section are two reactions that do not actually involve carbo-cation intermediates. They do, however, result in carbon to carbon rearrangements that are structurally similar to the pinacol rearrangement. In both reactions cyclic intermediates are formed, at least under some circumstances. In the Favorskii rearrangement, an a-halo ketone rearranges to a carboxylic acid or ester. In the Ramberg-Backlund reaction, an a-halo sulfone gives an alkene. [Pg.892]

Ring contractions of pyran derivatives are occasionally valuable. The contraction of 3-halo-2-pyrones to 2-furoic acids under the influence of alkali has been studied and the conditions defined.58112113 The method is adaptable to the preparation of 3-furoic acid via furan-2,4-dicarboxylic acid58 and of 3,4,5-triphenylfuran-2-carboxylic acid.113 Another ring contraction involving halides is the conversion of 4-chloromethylpyrylium salts into furylmethyl ketones as indicated in Scheme 21.114 Pyridine oxides may be transformed with unexpected ease into furans through treatment with a thiol (Scheme 22).115... [Pg.189]

D-a-Hydroxy carboxylic acids.1 These optically active acids can be prepared by a Sn2 reaction between the t-butyl esters of L-2-halo carboxylic acids and cesium p-nitrobenzoate, which proceeds with complete inversion. [Pg.78]

Aromatic halides react with crown ether-complexed K02 by an electron-transfer mechanism and not by nucleophilic attack, as was shown by Frimer and Rosenthal (1976) using esr spectroscopy. The corresponding phenol is the main reaction product (Yamaguchi and Van der Plas, 1977). Esters are saponified by the K02/18-crown-6 complex in benzene, presumably by an addition-elimination pathway (San Fillippo et al., 1976). The same complex has been used to cleave cr-keto-, or-hydroxy-, and or-halo-ketones, -esters, and -carboxylic acids into the corresponding carboxylic acids in synthetically useful quantities (San Fillippo et al., 1976). [Pg.358]

Af-Ethyl-A-(3-halo-2-methylphenyl)aminomethylenemalonates (106, R = Et, R1 = Me, R2 = Hlg, R3 = H) were heated in polyphosphoric acid, prepared from phosphoric acid and phosphorus pentoxide, at 140°C for 40 min. The reaction mixture was then poured into water, and the product was hydrolyzed with 10% aqueous sodium hydroxide to give quinoline-3-carboxylic acids (696, R = Et, R1 = Me,R2 = Hlg) in 68-70% yields (80GEP3007006). [Pg.164]

The cyclodehydrohalogenation of 2-halo-Ar,AT-diarylamines is analogous to the classical Heck reaction [114-116] and represents a palladium(0)-catalyzed process (Scheme 28). Cyclization of the diarylamine 78 with a palladium(O) catalyst, generated in situ by reduction of palladium(II) with triethylamine, affords carbazole-1-carboxylic acid 79 in 73% yield [122]. [Pg.136]

Carboxylic acid, aldehyde, ketone, ether, alcohol, ester, ester-R (the chain attached to the oxygen atom being a generic substituent), anhydride, acetal, amide, epoxide, acid halyde, primary amine, primary imine, cyano, secondary amine, secondary imine, tertiary amine, nitro derivative, metal-1, metal-2, carbene, halo derivative. [Pg.521]

This simple, selective and efficient method was applied to a wide range of aliphatic/ aromatic carboxylic acid derivatives that contain hydroxyl-, halo-, ester and other base-sensitive groups as substituents. [Pg.189]

In this context Miller " has demonstrated that all these issues could be overcome by hydroxamic-acids-based heteroatom activation.Therefore, S-halo or /S-hydroxy carboxylic acids 148a and 148b are converted to the corresponding hydroxamates 149a and 149b by active ester condensation with 0-substituted hydroxylamines (Scheme 69). Since chiral... [Pg.200]

Methyl ketones are degraded to the next lower carboxylic acid by reaction with hypochlorite or hypobromite ions. The initial step in these reactions involves base-catalyzed halogenation. The halo ketones are more reactive than their precursors, and rapid halogenation to the trihalo compound results. Trihalomethyl ketones are susceptible to alkaline cleavage because of the inductive stabilization provided by the halogen atoms. [Pg.803]


See other pages where Halo carboxylic acids is mentioned: [Pg.429]    [Pg.632]    [Pg.110]    [Pg.488]    [Pg.1014]    [Pg.1403]    [Pg.153]    [Pg.217]    [Pg.139]    [Pg.41]    [Pg.264]    [Pg.110]   


SEARCH



Halo acids

© 2024 chempedia.info