Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids diastereoselective additions

Ester enolates which contain the chiral information in the acid moiety have been widely used in alkylations (see Section D.1.1.1,3.) as well as in additions to carbon-nitrogen double bonds (sec Section D.1.4.2.). Below are examples of the reaction of this type of enolate with aldehydes720. The (Z)-enolate generated from benzyl cinnamate (benzyl 3-phenylpropcnoate) and lithium (dimethylphenylsilyl)cuprate affords the /h/-carboxylic acid on addition to acetaldehyde and subsequent hydrogenolysis, The diastereoselectivity is 90 10. [Pg.486]

Results of nucleophilic addition reactions to various a-oxo 4,5-dihydrooxazoles are summarized in Table 24. In general, the diastereoselectivity of these reactions is low to moderate, although an increased selectivity is found in the presence of triethylamine or N,N,N, N -te-tramethylethylenediamine, which slow down the rate of reaction. Nevertheless, enantiomerical-ly pure 2-hydroxy carboxylic acids can be prepared by this method, since the diastereomeric addition products are separable either by recrystallization or HPLC21. [Pg.104]

Although lithium aldolates generally display a rather moderate preference for the u/f/z-isomer4, considerable degrees of diastereoselectivity have been observed in the reversible addition of doubly deprotonated carboxylic acids to aldehydes20. For example, the syn- and uw/z-alkox-ides, which form in a ratio of 1.9 1 in the kinctically controlled aldol addition, equilibrate in tetrahydrofuran at 25 C after several hours to a 1 49 mixture in favor of the anti-product20. [Pg.455]

A completely different dipolar cycloaddition model has been proposed39 in order to rationalize the stereochemical outcome of the addition of doubly deprotonated carboxylic acids to aldehydes, which is known as the Ivanov reaction. In the irreversible reaction of phenylacetic acid with 2,2-dimethylpropanal, metal chelation is completely unfavorable. Thus simple diastereoselectivity in favor of u f/-adducts is extremely low when chelating cations, e.g., Zn2 + or Mg- +, are used. Amazingly, the most naked dianions provide the highest anti/syn ratios as indicated by the results obtained with the potassium salt in the presence of a crown ether. [Pg.460]

The mechanistic analogy to the Streckcr synthesis becomes obvious in the addition of the isocyanide to the imine to produce the a-amino nitrilium intermediate. Since all four components are involved in this step, it might be expected that every chiral component (chiral groups R1, R2, R3, R4) contributes to diastereofacial differentiation in the nucleophilic attack on the imine. However, in peptide syntheses by four-component condensation5, the chiral isocyanide or a chiral carboxylic acid component has only limited influence on the diastereoselectivity of the a-amino amide formation5. [Pg.783]

On the other hand, following the same sequences from the differently protected serine-derived nitrone 168, through the formation of hydroxylamines 169, C2 epimers of carboxylic acid and aldehydes are obtained, i.e., (2S,3R)-170 and (2S,3R)-171. Moreover, the syn adducts 164 were exclusively obtained in the addition of Grignard reagents to the nitrone 163, whereas the same reactions on nitrone 168 occurred with a partial loss of diastereoselectivity [80]. Q, j6-Diamino acids (2R,3S)- and (2R,3R)-167 can also be prepared from the a-amino hydroxylamines 164 and 169 by reduction, deprotection and oxidation steps. The diastereoselective addition of acetylide anion to N,N-dibenzyl L-serine phenyhmine has been also described [81]. [Pg.32]

The literature presents a large number of examples concerning the use of known oxazolidinones as chiral auxiliaries in many kinds of reactions. Rare is the use of A-amino derivatives of oxazolidinones, which were used to synthesise new A-acylhydrazones 207. Radical addition reactions occurred with high diastereoselectivity <00JA8329>. The use of glycolate oxazolidinones 210 proved to be efficient for the enantioselective preparation of a-alkoxy carboxylic acid derivatives . Photochemical reaction of vinyl... [Pg.232]

The addition of an allyl metal to a-amino aldehydes has been used by Vara Prasad and Rich (Scheme 12)J23l After the addition step, the allyl group is oxidized to a carboxylic acid and lactonized. Then, the a-carbon of the lactone is alkylated stereoselectively. These investigators also systematically examined the addition reaction to determine its diastereo-selectivity. The highest diastereoselectivity was obtained when allyltrimethylsilane was used in the presence of tin(IV) chloride. An increase in the steric bulk of the protecting group and of the side chain also resulted in a better diastereoselection. Alternatively, Taddei and co-workers 24-26 used a 2-(halomethyl)allylsilane and the side chains were introduced by nucleophilic substitution of the halogen (Scheme 13). [Pg.379]

Additionally, 1,2-dihydroxyethylene dipeptide analogues without the C-terminal carboxylic acid have been used to obtain aspartyl proteases inhibitors.[641 These efforts include stereoselective alkylation of imines, one-pot reductive amination of epoxy ketones, ring opening of epoxides with sodium azide, diastereoselective dihydroxylation of allylic amines, and enzymatic resolution and stereocontrolled intramolecular amidation. [Pg.391]

Masked chiral a-hetero substituted carboxylic acid enolates have also shown utility in dia-stereoselective additions to nitroalkenes. For example, derivatives of a-hydroxycarboxylic acids, e.g. l,3-dioxolan-4-ones (187) a-amino acids, e.g. 1,3-imidazolidin-4-ones (188) and a-amino-fi-hydroxy-carboxylic acids, e.g. methyl 1,3-oxazolidin-4-carboxylates (189) and methyl l,3-oxazolin-4-carboxy-lates (190), have been employed.1S0a Further, diastereoselective additions of chiral (3-hydroxyesters (191), via the enediolates, to nitroalkenes (40) afford predominant anr/ -P-hydroxyesters (192 Scheme... [Pg.109]

Another type of chiral Michael acceptor, the oxazepine derivatives (47), is prepared by condensation of the (-)-ephedrine-derived malonic acid derivative (46) with aldehydes (Scheme 18).51 52 Treatment of (47) with a variety of Grignard reagents in the presence of NiCh affords, after hydrolysis and decarboxylation, the 3-substituted carboxylic acids (48), in most cases with more than 90% ee. Diastereoselective Michael additions to (47) were also used for the preparation of optically active cyclopropane derivatives (49)53 and P-substituted-y-butyrolactones (50 Scheme 18).54 A total synthesis of indolmycin is based on this methodology.55... [Pg.206]

The (diastereoselective) conjugate addition of silylcuprate reagents to a variety of chiral derivatives of a,(3-unsaturated carboxylic acids can be used to prepare optically active p-silyl esters.258 259 Best results are obtained with substrates of type (25). The (related) p-silyl ketones, which also constitute valuable building blocks for (acyclic) stereoselective synthesis, are now accessible in high ee via palladium-catalyzed enantioselective 1,4-disiiylation of a,p-unsaturated ketones (Scheme 76).260... [Pg.231]

In the pioneering work by Wilcox and Gaudino, a straightforward route to the carbocyclic analogue of D-fructofuranose, 64, and its 6-phosphate derivative was delineated [14a,b]. As shown in Scheme 9, the first move consisted of Wittig olefination of benzyl-protected arabinose 60 with carboxy-tert-butylmethylene triphenyl phosphorane to deliver unsaturated ester 61, which was then cleverly elaborated into dibromide 62 via a reaction cascade encompassing Swem oxidation of the secondary OH, ester hydrolysis, diastereoselective addition of dibromomethyl lithium, and carboxylic acid methylation. [Pg.460]

The Birch reduction has been applied to electron-deficient pyrroles substituted with a chiral auxiliary at the C(2)-position <1999TL435>. Using either (—)-8-phenylmenthol or (- -)-/ra /-2-(ot-cumyl)cyclohexanol as auxiliaries, high levels of stereoselectivity were obtained. Pyrrole 911, prepared from the l/7-pyrrole-2-carboxylic acid 910 in 90% yield, was reduced under modified Birch conditions (Scheme 176). The best conditions involved lithium metal (3 equiv), liquid ammonia and THE at —78°C. The addition of A, A -bis(2-methoxyethyl)amine (10 equiv) helped to reduce side reactions caused by the lithium amide formed in the reaction <1998TL3075>. After 15 min, the Birch reductions were quenched with a range of electrophiles and in each case 3,4-dehydroproline derivatives 912 were formed in excellent yields and with good diastereoselectivities. [Pg.179]

Irradiation of alkoxycarbene complexes in the presence of aUcenes and carbon monoxide produces cyclobutanones. A variety of inter- and intramolecular [2 + 2]cycloadditions have been reported. The regioselectivity is comparable with those obtained in reactions of ketenes generated from carboxylic acid derivatives. Cyclobutanones can be obtained with a high degree of diastereoselectivity upon reaction of alkoxy carbenes with chiral A-vinyloxazolidinones. For example, photolysis of (19) in the presence of (20) gives cyclobutanone (21) (Scheme 31). In addition to aUcoxycarbenes, carbenes having a thioether or pyrrole substituent can also be employed. Related intramolecular cycloadditions of y,5-unsaturated chromimn carbenes afford bicyclo[2.1. IJhexanones (Scheme 32). [Pg.3223]

Enzymes are specific catalysts for regioselective, diastereoselective and enantioselective addition of ammonia to a,/i-unsaturated carboxylic acids L-a-amino acids are formed, containing one or two stereogenic centers depending on the substitution pattern of the double bond 15a-b-51-56. [Pg.738]

Diastereoselective Conjugate Addition of Organometallic Reagents to Chiral a,P-Unsaturated Amides and Imidazolidi-nones Derived from Ephedrine. Grignard reagents (2 equiv) add to chiral a,P-unsaturated amides derived from ephedrine in a 1,4-addition manner with high diastereoselectivities. Subsequent acidic hydrolysis affords optically active p-substituted carboxylic acids with 85-99% ee (eq 3). ... [Pg.323]


See other pages where Carboxylic acids diastereoselective additions is mentioned: [Pg.295]    [Pg.28]    [Pg.128]    [Pg.270]    [Pg.343]    [Pg.32]    [Pg.193]    [Pg.295]    [Pg.5]    [Pg.295]    [Pg.24]    [Pg.854]    [Pg.854]    [Pg.390]    [Pg.201]    [Pg.204]    [Pg.518]    [Pg.823]    [Pg.518]    [Pg.272]    [Pg.867]    [Pg.643]    [Pg.286]    [Pg.77]    [Pg.139]    [Pg.83]    [Pg.113]    [Pg.438]    [Pg.324]    [Pg.518]    [Pg.270]    [Pg.490]   
See also in sourсe #XX -- [ Pg.200 , Pg.201 , Pg.202 , Pg.203 , Pg.204 , Pg.205 , Pg.206 , Pg.207 ]




SEARCH



Carboxylic Acid Additives

Carboxylic acids addition

Diastereoselective addition

© 2024 chempedia.info