Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids, amidation catalyzed

Bahrami K, Khodaei MM, Farrokhi A (2009) Highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc oxide. Synth Commun 39 1801-1808 74. Gross GA, Wurziger H, Schober A (2006) Solid-phase synthesis of 4,6-diaryl-3,4-dihydro-pyrimidine-2(lH)-one-5-carboxylic acid amide derivatives a Biginelli three-component-condensation protocol based on immobilized beta-ketoamides. J Comb Chem 8 153-155 Desai B, Dallinger D, Kappe CO (2006) Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron 62 4651 664 Kumar A, Maurya RA (2007) An efficient bakers yeast catalyzed synthesis of 3,4-dihydro-pyrimidin-2-(lH)-ones. Tetrahedron Lett 48 4569-4571 77. Zalavadiya P, Tala S, Akbari J, Joshi H (2009) Multi-component synthesis of dihydropyrimidines by iodine catalyst at ambient temperature and in-vitro anti mycobacterial activity. Arch Pharm 342 469-475... [Pg.272]

Amides. Although similar to esters in terms of being a functional derivative of a carboxylic acid, amides, unlike esters, are relatively metabolically stable. In general, amides are stable to acid- and base-catalyzed hydrolysis. This stability is related to the overlapping electron clouds within the amide functionality and the corresponding multiple resonance forms. Amidases are enzymes that can catalyze the hydrolysis of amides. Nevertheless, amides are much more stable than esters. [Pg.151]

The Influence of Fluoro Substituents On the Reactivity of Carboxylic Acids, Amides, and Peptides in Enzyme-Catalyzed Reactions ... [Pg.478]

In summary, the first lesson learned was the ability of CO2 released during the activation of a carboxylic acid to catalyze the subsequent amidation reaction. Although the mechanistic aspects need some clarification, the utility of this phenomenon in organic synthesis, especially on large scale, is clear. [Pg.59]

The protecting acetyl group is removed by acid-catalyzed hydrolysis to generate the hydrochloride salt of the product, sulfanilamide. Note that of the two amide linkages present, only the carboxylic acid amide (acetamido group) was cleaved, not the sulfonic acid amide (sulfonamide). The salt of the sulfa drug is converted to sulfanilamide when the base, sodium bicarbonate, is added. [Pg.393]

Unlike esters, which can be prepared by acid-catalyzed condensation of an alcohol and a carboxylic acid, amides cannot be prepared by an acid-catalyzed condensation of an amine and a carboxylic acid. Why ... [Pg.796]

Lipase-catalyzed synthesis of carboxylic acid amides in hexane [18]. [Pg.82]

Hydrolysis of nitriles Hydrolysis of [ CJnitrile functions represents a well-established route for the synthesis of [ C]carboxylic acids. For cases in which the harsh reaction conditions of chemical hydrolysis (e.g., 2 N NaOH, reflux) are incompatible with sensitive functionalities, application of enzymes might provide an alternative (Figure 12.17). Enzymatic hydrolysis of nitriles results in amides if catalyzed by nitrile hydratases or in the corresponding carboxylic acids if catalyzed by nitrilases". ... [Pg.620]

In his cephalosporin synthesis methyl levulinate was condensed with cysteine in acidic medium to give a bicyclic thiazolidine. One may rationalize the regioselective formation of this bicycle with the assumption that in the acidic reaction mixture the tMoI group is the only nucleophile present, which can add to the ketone. Intramolecular amide formation from the methyl ester and acid-catalyzed dehydration would then lead to the thiazolidine and y-lactam rings. The stereochemistry at the carboxylic acid a-... [Pg.313]

This compound undergoes hydrolysis of the amide group intramolecularly catalyzed by the neighboring carboxylic acid group. The rate equation, in the pH range 1—... [Pg.282]

Basic hydrolysis occurs by nucleophilic addition of OH- to the amide carbonyl group, followed by elimination of amide ion (-NH2) and subsequent deprotonation of the initially formed carboxylic acid by amide ion. The steps are reversible, with the equilibrium shifted toward product by the final deprotonation of the carboxylic acid. Basic hydrolysis is substantially more difficult than the analogous acid-catalyzed reaction because amide ion is a very poor leaving group, making the elimination step difficult. [Pg.815]

BORIC ACID CATALYZED AMIDE FORMATION FROM CARBOXYLIC ACIDS AND AMINES N-BENZYL-4-PHENYLBUTYRAMIDE... [Pg.136]

Several important generalizations emerge from the study of the boric acid catalyzed amidation of carboxylic acids and amines. [Pg.140]

The last method for the preparation of 2-quinolones described in this chapter relies on a intramolecular Heck cyclization starting from heteroaryl-amides (Table 2) [57]. These are synthesized either from commercially available pyrrole- and thiophene-2-carboxylic acids (a, Table 2) or thiophene-and furan-3-carboxylic acids (b, Table 2) in three steps. The Heck cyclization is conventionally performed with W,Ar-dimethylacetamide (DMA) as solvent, KOAc as base and Pd(PPh3)4 as catalyst for 24 h at 120 °C resulting in the coupled products in 56-89% yields. As discussed in Sect. 3.4, transition metal-catalyzed reactions often benefit from microwave irradiation [58-61], and so is the case also for this intramolecular reaction. In fact, derivatives with an aryl iodide were successfully coupled by conventional methods, whereas the heteroarylbromides 18 and 19, shown in Table 2, could only be coupled in satisfying yields by using MAOS (Table 2). [Pg.320]

Imides can be prepared by the attack of amides or their salts on acyl halides, anhydrides, and carboxylic acids or esters. The best synthetic method for the preparation of acyclic imides is the reaction between an amide and an anhydride at 100°C catalyzed by H2S04. When acyl chlorides are treated with amides in a2 l molar ratio at low temperatures in the presence of pyridine, the products are N,N-diacylamides, (RCO)3N. ... [Pg.514]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

One of the most important characteristics of IL is its wide temperature range for the liquid phase with no vapor pressure, so next we tested the lipase-catalyzed reaction under reduced pressure. It is known that usual methyl esters are not suitable for lipase-catalyzed transesterification as acyl donors because reverse reaction with produced methanol takes place. However, we can avoid such difficulty when the reaction is carried out under reduced pressure even if methyl esters are used as the acyl donor, because the produced methanol is removed immediately from the reaction mixture and thus the reaction equilibrium goes through to produce the desired product. To realize this idea, proper choice of the acyl donor ester was very important. The desired reaction was accomplished using methyl phenylth-ioacetate as acyl donor. Various methyl esters can also be used as acyl donor for these reactions methyl nonanoate was also recommended and efficient optical resolution was accomplished. Using our system, we demonstrated the completely recyclable use of lipase. The transesterification took place smoothly under reduced pressure at 10 Torr at 40°C when 0.5 equivalent of methyl phenylthioacetate was used as acyl donor, and we were able to obtain this compound in optically pure form. Five repetitions of this process showed no drop in the reaction rate (Fig. 4). Recently Kato reported nice additional examples of lipase-catalyzed reaction based on the same idea that CAL-B-catalyzed esterification or amidation of carboxylic acid was accomplished under reduced pressure conditions. ... [Pg.7]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]

Scheme 8.15. Synthesis of Ketones, Esters, Carboxylic Acids, and Amides by Palladium-Catalyzed Carbonylation and Acylation... [Pg.753]

The reaction of alcohols with CO was catalyzed by Pd compounds, iodides and/or bromides, and amides (or thioamides). Thus, MeOH was carbonylated in the presence of Pd acetate, NiCl2, tV-methylpyrrolidone, Mel, and Lil to give HOAc. AcOH is prepared by the reaction of MeOH with CO in the presence of a catalyst system comprising a Pd compound, an ionic Br or I compound other than HBr or HI, a sulfone or sulfoxide, and, in some cases, a Ni compound and a phosphine oxide or a phosphinic acid.60 Palladium(II) salts catalyze the carbonylation of methyl iodide in methanol to methyl acetate in the presence of an excess of iodide, even without amine or phosphine co-ligands platinum(II) salts are less effective.61 A novel Pd11 complex (13) is a highly efficient catalyst for the carbonylation of organic alcohols and alkenes to carboxylic acids/esters.62... [Pg.148]


See other pages where Carboxylic acids, amidation catalyzed is mentioned: [Pg.105]    [Pg.303]    [Pg.546]    [Pg.23]    [Pg.527]    [Pg.599]    [Pg.438]    [Pg.105]    [Pg.846]    [Pg.304]    [Pg.105]    [Pg.167]    [Pg.208]    [Pg.530]    [Pg.43]    [Pg.607]    [Pg.427]    [Pg.459]    [Pg.144]    [Pg.188]    [Pg.340]    [Pg.494]    [Pg.1179]    [Pg.446]    [Pg.134]    [Pg.537]   


SEARCH



Amides carboxylates

Carboxylic amides

© 2024 chempedia.info