Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation alkyne carbonylations

CO. Alkynes will react with carbon monoxide in the presence of a metal carbonyl (e.g. Ni(CO)4) and water to give prop>enoic acids (R-CH = CH-C02H), with alcohols (R OH) to give propenoic esters, RCH CHC02R and with amines (R NH2) to give propenoic amides RCHrCHCONHR. Using alternative catalysts, e.g. Fe(CO)5, alkynes and carbon monoxide will produce cyclopentadienones or hydroquinols. A commercially important variation of this reaction is hydroformyiation (the 0x0 reaction ). [Pg.82]

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

The addition of acetylides to oxiranes yields 3-alkyn-l-ols (F. Sondheimer, 1950 M.A. Adams, 1979 R.M. Carlson, 1974, 1975 K. Mori, 1976). The acetylene dianion and two a -synthons can also be used. 1,4-Diols with a carbon triple bond in between are formed from two carbonyl compounds (V. Jager, 1977, see p. 52). The triple bond can be either converted to a CIS- or frans-configurated double bond (M.A. Adams, 1979) or be hydrated to give a ketone (see pp. 52, 57, 131). [Pg.64]

Migration of a hydride ligand from Pd to a coordinated alkene (insertion of alkene) to form an alkyl ligand (alkylpalladium complex) (12) is a typical example of the a, /(-insertion of alkenes. In addition, many other un.saturated bonds such as in conjugated dienes, alkynes, CO2, and carbonyl groups, undergo the q, /(-insertion to Pd-X cr-bonds. The insertion of an internal alkyne to the Pd—C bond to form 13 can be understood as the c -carbopa-lladation of the alkyne. The insertion of butadiene into a Ph—Pd bond leads to the rr-allylpalladium complex 14. The insertion is usually highly stereospecific. [Pg.7]

Another feature of the Pd—C bonds is the excellent functional group tolerance. They are inert to many functional groups, except alkenes and alkynes and iodides and bromides attached to sp carbons, and not sensitive to H2O, ROH, and even RCO H. In this sense, they are very different from Grignard reagents, which react with carbonyl groups and are easily protonated. [Pg.17]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

As an application of maleate formation, the carbonylation of silylated 3-butyn-l-ol affords the 7-butyrolactone 539[482], Oxidative carbonylation is possible via mercuration of alkynes and subsequent Lransmetallation with Pd(II) under a CO atmosphere. For example, chloromercuration of propargyl alcohol and treatment with PdCF (1 equiv.) under 1 atm of CO in THF produced the /3-chlorobutenolide 540 in 96% yield[483]. Dimethyl phenylinale-ate is obtained by the reaction of phenylacetylene, CO, PdCU, and HgCl2 in MeOH[484,485]. [Pg.100]

Carbonylation of halides in the presence of terminal and internal alkynes produces a variety of products. The substituted indenone 564 is formed by the reaction of o-diiodobenzene. alkyne, and CO in the presence of Zn[414]. [Pg.205]

The carbonylation of aryl iodides in the presence of terminal alkynes affords the acyl alkynes 565. Bidentate ligands such as dppf give good results. When PhjP is used, phenylacetylene is converted into diphenylacetylene as a main product[4l5]. Triflates react similarly to give the alkynyl ketones 566[4I6], In... [Pg.205]

The 2-substituted 3-acylindoles 579 are prepared by carbonylative cycliza-tion of the 2-alkynyltrifluoroacetanilides 576 with aryl halides or alkenyl tri-flates. The reaction can be understood by the aminopalladation of the alkyne with the acylpalladium intermediate as shown by 577 to generate 578, followed by reductive elimination to give 579[425]. [Pg.207]

The carbonylation of iodobenzene with the benzylacetylene 580 affords the ( -3-arylidenebutenolide 582 by carbonylation of the benzoyl alkyne formed as a primary product[426]. The vinylpalladium 581 is formed by the addition of... [Pg.207]

The alkenylzirconium 685, prepared by hydrozirconation of a terminal alkyne with hydrozirconocene chloride, reacts with alkenyl halide to afford the conjugated diene 686(545]. The Zr reagent can be used even in the presence of the carbonyl group in 687, which is sensitive to Al and Mg reagents. [Pg.228]

Similarly to alkenes. alkynes also insert. In the reaction of 775 carried out under a CO atmosphere in AcOH, sequential insertions of alkyne, CO. alkene. and CO take place in this order, yielding the keto ester 776[483]. However, the same reaction carried out in THF in the presence of LiCl affords the ketone 777, but not the keto ester[484]. The tricyclic terpenoid hirsutene (779) has been synthesized via the Pd-catalyzed metallo-ene carbonylation reaction of 778 with 85% diastereoselectivity as the key reaction[485], Kainic acid and allo-kainic acid (783) have been synthesized by the intramolecular insertion ol an alkene in 780, followed by carbonylation to give 781 and 782[486],... [Pg.397]

In addition to alcohols, some other nucleophiles such as amines and carbon nucleophiles can be used to trap the acylpalladium intermediates. The o-viny-lidene-/j-lactam 30 is prepared by the carbonylation of the 4-benzylamino-2-alkynyl methyl carbonate derivative 29[16]. The reaction proceeds using TMPP, a cyclic phosphite, as a ligand. When the amino group is protected as the p-toluenesulfonamide, the reaction proceeds in the presence of potassium carbonate, and the f>-alkynyl-/J-lactam 31 is obtained by the isomerization of the allenyl (vinylidene) group to the less strained alkyne. [Pg.457]

The presence of formates, oxalates, formic acid, and oxalic acid in the carbonylation of alkynes affects the regioselectivity. Also, the regioselectivity can be controlled to some extent by the proper selection of the ligands. A linear a,... [Pg.472]

J-unsaturated ester is formed from a terminal alkyne by the reaction of alkyl formate and oxalate. The linear a, /J-unsaturated ester 5 is obtained from the terminal alkyne using dppb as a ligand by the reaction of alkyl formate under CO pressure. On the other hand, a branehed ester, t-butyl atropate (6), is obtained exclusively by the carbonylation of phenylacetylene in t-BuOH even by using dppb[10]. Reaction of alkynes and oxalate under CO pressure also gives linear a, /J-unsaturated esters 7 and dialkynes. The use of dppb is essen-tial[l 1]. Carbonylation of 1-octyne in the presence of oxalic acid or formic acid using PhiP-dppb (2 I) and Pd on carbon affords the branched q, /J-unsatu-rated acid 8 as the main product. Formic acid is regarded as a source of H and OH in the carboxylic acids[l2]. [Pg.473]

Using a catalyst system of PdCl2, CuCH, HCl, and O2, the internal alkyne 20 is carbonylated at room temperature and 1 atm to give unsaturated esters[19]. This apparently oxidizing system leads to non-oxidative cu-hydroesterilica-tion. With terminal alkynes, however, oxidative carbonylation is observed. [Pg.474]

Carbonylation of the tetrasubstituted bispropargyiic amine 23 using PdCP and thiourea under mild conditions affords the carboxylated pyrrolidine derivatives 24a and b in good yields. Thiourea is regarded as effective for the oxidative carbonylation of alkynes, but no oxidative carbonylation was observed in this case[21]. [Pg.475]

Diaryl disulfides and diselenides add to alkynes to afford the (Z)-l, 2-bis(ar-ylthio)alkenes 193 and (Z)-l,2-bis(arylseleno)alkenes 194. Under CO pressure, carbonylative addition takes place to give thio esters and the selenoketones 195[I07], The selenoketones are converted into the /J-seleno-a, 3-unsaturated aldehydes 196 by Pd-catalyzed hydrogenolysis with HSnBu3[108,109],... [Pg.495]

The reaction of allyl halides with terminal alkynes by use of PdClifFhCNji as a catalyst affords the l-halo-l,4-pentadienes 297. 7r-AlIylpalladium is not an intermediate in this reaction. The reaction proceeds by chloropalladation of the triple bond by PdCh, followed by the insertion of the double bond of the allyl halide to generate 296. The last step is the regeneration by elimination of PdCh, which recycles[148]. The cis addition of allyl chloride to alkynes is supported by formation of the cyclopentenone 299 from the addition product 298 by Ni(CO)4-catalyzed carbonylation[149]. [Pg.504]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

It looks as though all that is needed is to prepare the acetylenic anion then alkylate it with methyl iodide (Section 9 6) There is a complication however The carbonyl group m the starting alkyne will neither tolerate the strongly basic conditions required for anion formation nor survive m a solution containing carbanions Acetyhde ions add to carbonyl... [Pg.723]

You have had earlier experience with enols m their role as intermediates m the hydration of alkynes (Section 9 12) The mechanism of enolization of aldehydes and ketones is precisely the reverse of the mechanism by which an enol is converted to a carbonyl compound... [Pg.759]

The direct combination of selenium and acetylene provides the most convenient source of selenophene (76JHC1319). Lesser amounts of many other compounds are formed concurrently and include 2- and 3-alkylselenophenes, benzo[6]selenophene and isomeric selenoloselenophenes (76CS(10)159). The commercial availability of thiophene makes comparable reactions of little interest for the obtention of the parent heterocycle in the laboratory. However, the reaction of substituted acetylenes with morpholinyl disulfide is of some synthetic value. The process, which appears to entail the initial formation of thionitroxyl radicals, converts phenylacetylene into a 3 1 mixture of 2,4- and 2,5-diphenylthiophene, methyl propiolate into dimethyl thiophene-2,5-dicarboxylate, and ethyl phenylpropiolate into diethyl 3,4-diphenylthiophene-2,5-dicarboxylate (Scheme 83a) (77TL3413). Dimethyl thiophene-2,4-dicarboxylate is obtained from methyl propiolate by treatment with dimethyl sulfoxide and thionyl chloride (Scheme 83b) (66CB1558). The rhodium carbonyl catalyzed carbonylation of alkynes in alcohols provides 5-alkoxy-2(5//)-furanones (Scheme 83c) (81CL993). The inclusion of ethylene provides 5-ethyl-2(5//)-furanones instead (82NKK242). The nickel acetate catalyzed addition of r-butyl isocyanide to alkynes provides access to 2-aminopyrroles (Scheme 83d) (70S593). [Pg.135]

Furans, thiophenes and pyrroles have all been obtained by addition of alkynic dienophiles to a variety of other five-membered heterocycles, as illustrated in Scheme 104. As the alkynic moiety provides carbons 3 and 4 of the resulting heterocycle, this synthetic approach provides an attractive way of introducing carbonyl containing substituents at these positions, especially as many of the heterocyclic substrates are readily generated. Such reactions do... [Pg.144]


See other pages where Carbonylation alkyne carbonylations is mentioned: [Pg.81]    [Pg.339]    [Pg.154]    [Pg.16]    [Pg.206]    [Pg.471]    [Pg.472]    [Pg.473]    [Pg.440]    [Pg.178]    [Pg.179]    [Pg.181]    [Pg.442]    [Pg.348]    [Pg.123]    [Pg.152]    [Pg.170]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Aldehydes alkyne-carbonyl metathesis

Alkyne derivatives carbonylation

Alkyne reactions with cobalt carbonyl complexes

Alkyne-alkene-carbonyl

Alkyne-alkene-carbonyl Pauson-Khand reaction

Alkyne-alkene-carbonyl compounds

Alkyne-alkene-carbonyl cycloaddition

Alkyne-carbonyl coupling reactions

Alkyne-carbonyl reductive couplings

Alkyne-iron carbonyl complexes

Alkyne-metal carbonyl reactions

Alkynes carbonyl

Alkynes carbonyl

Alkynes carbonyl groups

Alkynes carbonylation

Alkynes carbonylation

Alkynes carbonylations

Alkynes carbonylations

Alkynes carbonylative annulation

Alkynes catalytic oxidative carbonylation

Alkynes oxidative carbonylation

Alkynes with carbonyl compounds

Alkynes, carbonylative coupling

Alkynes, cyclization carbonylative

Alkynes, halo carbonylation

Alkynes, reactions with carbonyl clusters

Allyl halide-alkyne cyclization carbonylative

Capnellene via carbonyl-alkyne cyclization

Carbonyl compounds alkynes hydration

Carbonyl ylides alkyne cyclizations

Carbonyl ylides, cycloaddition alkynes

Carbonyl-alkyne cyclisations

Carbonyl-alkyne reaction

Carbonylation alkyne terminations

Carbonylation intramolecular alkyne reactions

Carbonylation of Alkenes and Alkynes

Carbonylation of Internal Alkynes

Carbonylation of alkynes

Carbonylation of methane, alkenes and alkynes

Carbonylations of Alkenes and Alkynes

Carbonylative thiocarbonylation, alkyne

Carbonyls reaction with alkynes

Cationic palladium complexes alkyne carbonylation

Compounds Derived from Alkynes and Carbonyl Complexes of Cobalt

Cyclopentadienyl carbonyl complexes alkynes

Cyclopentadienyl carbonyl complexes with alkynes

Diesters oxidative carbonylation of alkynes

Hirsutene via carbonyl-alkyne cyclization

Metal carbonyls polymerization, alkynes

Osmium carbonyl clusters with alkynes

Oxidative carbonylation of terminal alkynes

Oxidative carbonylations alkynes

RXN11 Tandem Cyclization-Anion Capture (-Carbonylation) Process of Alkenes, Allenes and Alkynes

Recent Developments in Alkyne Carbonylation

Ruthenium carbonyl clusters with alkynes

The Alkyne Cobalt Carbonyl Complexes

Tungsten carbonyl complexes alkynes

© 2024 chempedia.info