Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl imine enantioselective

Various catalysts were applied for reactions such as the hydrogenation of double, triple, carbon-carbon bonds as well as of carbonyl, imine, and nitrile groups. This included also enantioselective hydrogenations and hydrogenation using supercritical solvents ([146] and references therein). [Pg.266]

Addition to Carbonyls, Imines (Strecker-type Reactions), and Heteroaromatic Rings (Reissert-type Reactions). Cyanohydrin trimethylsilyl ethers are of significant synthetic interest as they can be transformed into a variety of multifunctional intermediates. Aldehydes and ketones can be enantioselectively converted to cyanohydrin trimethylsilyl ethers when treated with cyanotrimethylsilane in the presence of a Lewis acid and a chiral ligand. Enantioselective and/or diastereoselective formation of cyanohydrins and their derivatives has been reported and most of these reactions involve chiral ligands and metal catalysts containing Ti (eq 24), Sm (eq 25), and A1 (eq 26). ... [Pg.186]

L = P(CH3)3 or CO, oxidatively add arene and alkane carbon—hydrogen bonds (181,182). Catalytic dehydrogenation of alkanes (183) and carbonylation of bensene (184) has also been observed. Iridium compounds have also been shown to catalyse hydrogenation (185) and isomerisation of unsaturated alkanes (186), hydrogen-transfer reactions, and enantioselective hydrogenation of ketones (187) and imines (188). [Pg.182]

Catalytic enantioselective hetero-Diels-Alder reactions are covered by the editors of the book. Chapter 4 is devoted to the development of hetero-Diels-Alder reactions of carbonyl compounds and activated carbonyl compounds catalyzed by many different chiral Lewis acids and Chapter 5 deals with the corresponding development of catalytic enantioselective aza-Diels-Alder reactions. Compared with carbo-Diels-Alder reactions, which have been known for more than a decade, the field of catalytic enantioselective hetero-Diels-Alder reactions of carbonyl compounds and imines (aza-Diels-Alder reactions) are very recent. [Pg.3]

Scheme 13 Enantioselective carbonyl (Z)-dienylation via reductive coupling of acetylene to aldehydes and imines mediated by hydrogen... Scheme 13 Enantioselective carbonyl (Z)-dienylation via reductive coupling of acetylene to aldehydes and imines mediated by hydrogen...
The R,S-family 33, and of course its enantiomer, provide high enantioselectiv-ities and activities for the reductions of itaconic and dehydroamino acid derivatives as well as imines [141], The JosiPhos ligands have found industrial applications for reductions of the carbon-carbon unsaturation within a,/ -unsaturated carbonyl substrates [125, 127, 131, 143-149]. In contrast, the R,R-diastereoisomerof30 does not provide high stereoselection in enantioselective hydrogenations [125, 141]. [Pg.754]

Some chiral quaternary ammonium salts are also effective in Michael addition reactions. The Merck catalysts 7 (R=4-CF3, X=Br) and 9 (R=4-CF3, X=Br, 10,11-dihydro) were used tor the Michael additions of 59,61, and 64 to vinyl ketones to give the adducts 60,62, and 65 (isolated as 66), respectively,148,491 with excellent enantioselectivity, as shown in Scheme 19. The Michael addition of the O Donnell imine 23 to the a,(3-unsaturated carbonyl compounds also efficiently proceeded by use of the N-anthracenyl-methyl catalyst 12 (R=allyl, X=Br), giving the Michael adducts 67 (Scheme 20).1251... [Pg.134]

Asymmetric transfer hydrogenation of imines catalyzed by chiral arene-Ru complexes achieves high enantioselectivity (Figure 1.34). Formic acid in aprotic dipolar solvent should be used as a hydride source. The reaction proceeds through the metal-ligand bifunctional mechanism as shown in the carbonyl reduction (Figure 1.24). [Pg.26]

Snapper and Hoveyda reported a catalytic enantioselective Strecker reaction of aldimines using peptide-based chiral titanium complex [Eq. (13.11)]. Rapid and combinatorial tuning of the catalyst structure is possible in their approach. Based on kinetic studies, bifunctional transition state model 24 was proposed, in which titanium acts as a Lewis acid to activate an imine and an amide carbonyl oxygen acts as a Bronsted base to deprotonate HCN. Related catalyst is also effective in an enantioselective epoxide opening by cyanide "... [Pg.389]

Until 2006, a severe limitation in the field of chiral Brpnsted acid catalysis was the restriction to reactive substrates. The acidity of BINOL-derived chiral phosphoric acids is appropriate to activate various imine compounds through protonation and a broad range of efficient and highly enantioselective, phosphoric acid-catalyzed transformations involving imines have been developed. However, the activation of simple carbonyl compounds by means of Brpnsted acid catalysis proved to be rather challenging since the acid ity of the known BINOL-derived phosphoric acids is mostly insufficient. Carbonyl compounds and other less reactive substrates often require a stronger Brpnsted acid catalyst. [Pg.441]

Chiral phosphoric acids mediate the enantioselective formation of C-C, C-H, C-0, C-N, and C-P bonds. A variety of 1,2-additions and cycloadditions to imines have been reported. Furthermore, the concept of the electrophilic activation of imines by means of phosphates has been extended to other compounds, though only a few examples are known. The scope of phosphoric acid catalysis is broad, but limited to reactive substrates. In contrast, chiral A-triflyl phosphoramides are more acidic and were designed to activate less reactive substrates. Asymmetric formations of C-C, C-H, C-0, as well as C-N bonds have been established. a,P-Unsaturated carbonyl compounds undergo 1,4-additions or cycloadditions in the presence of A-triflyl phosphoramides. Moreover, isolated examples of other substrates can be electrophil-ically activated for a nucleophilic attack. Chiral dicarboxylic acids have also found utility as specific acid catalysts of selected asymmetric transformations. [Pg.454]

A new stereocenter is formed when a synthon 143 with umpoled carbonyl reactivity (d reactivity) is introduced into aldehydes or imines. The enantioselective variant of this type of reaction was a longstanding problem in asymmetric synthesis. The very large majority of a-hetero-snbstitnted carbanions which serve as eqnivalents for synthons like 142 and 143 lead to racemic products with aldehydes or imines. However, enantiomerically pnre acylions and a-hydroxy carboxylic acids or aldehydes (144 and ent-144, respectively) as well as a-amino acids and aldehydes (145 and ent-145) are accessible either by nsing chiral d reagents or by reacting the components in the presence of chiral additives (Scheme 18). [Pg.877]

In summary, of the many chiral auxiliaries used in the asymmetric synthesis of carbonyl compounds via imines, those able to form a methoxymethyl-chclated azaenolate show the best enantioselectivities (see Tabic 7). The same is true for valine and im-leucine derivatives which form rigid chelates via their carboxyl groups. In particular, quaternary centers (see Table 6) and a-alkvl-/i-oxo esters arc effectively prepared using these chiral auxiliaries. [Pg.987]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

It was also reported that diastereo- and enantioselective Mannich reactions of activated carbonyl compounds with a-imino esters were catalyzed by a chiral Lewis acid derived from Cu(OTf)2 and a bisoxazoline (BOX) ligand [31] [(Eq. (6)]. Catalytic enantioselective addition of nitro compounds to imines [32], and aza-Henry reactions of nitronates with imines [33] also proceeded under similar reaction conditions. [Pg.146]

The asymmetric alkylation of cyclic ketones, imines of glycine esters, and achiral, enolizable carbonyl compounds in the presence of chiral phase-transfer organoca-talysts is an efficient method for the preparation of a broad variety of interesting compounds in the optically active form. The reactions are not only highly efficient, as has been shown impressively by, e.g., the synthesis of enantiomerically pure a-amino acids, but also employ readily available and inexpensive catalysts. This makes enantioselective alkylation via chiral phase-transfer catalysts attractive for large-scale applications also. A broad range of highly efficient chiral phase-transfer catalysts is also available. [Pg.41]

The silver acetate-promoted 1,3-dipolar cycloaddition of nitrilimines with 3(/f )-pheny]-4(A )-cinnamoyl-2-azetidinone produced the major adduct, 4-(4,5-dihydro- (g) pyrazol-5-yl)carbonyl-2-azetidinones, with high stereoselectivity.70 The 1,3-dipolar cycloadditions of substituted 2,7-dime(liyl-3-thioxo-3,4,5,6-ici.rahydro-2//- 1,2,41 triazepin-5-one with iV-aryl-C-ethoxycarbonylnitrilimines are highly chemoselective, where the sulfur atom of the dipolarophile interacts with the carbon atom of the dipole.71 The enantioselective 1,3-dipolar cycloaddition of nitrile imines with electron deficient acceptors produces dihydropyrazoles in the presence of 10 mol% of chiral Lewis acid catalyst.72... [Pg.360]


See other pages where Carbonyl imine enantioselective is mentioned: [Pg.116]    [Pg.181]    [Pg.131]    [Pg.191]    [Pg.320]    [Pg.1336]    [Pg.1194]    [Pg.1216]    [Pg.284]    [Pg.131]    [Pg.110]    [Pg.111]    [Pg.412]    [Pg.331]    [Pg.394]    [Pg.131]    [Pg.1230]    [Pg.70]    [Pg.167]    [Pg.40]    [Pg.171]    [Pg.569]    [Pg.584]    [Pg.270]    [Pg.125]    [Pg.467]    [Pg.359]    [Pg.245]    [Pg.220]   
See also in sourсe #XX -- [ Pg.278 , Pg.279 , Pg.280 ]




SEARCH



Carbonyl imine

Enantioselection imines

Enantioselectivity imine

Enantioselectivity imines

© 2024 chempedia.info