Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl electron transfer reaction

Acylsilanes are a class of compounds in which a silyl group is directly bound to the carbonyl carbon, and they have received considerable research interest from the point of view of both physical organic and synthetic organic chemistry [15]. Acylsilanes have a structure quite similar to the structure of a-silyl-substituted ethers a silyl group is attached to the carbon adjacent to the oxygen atom, although the nature of the C-O bond is different. Therefore, one can expect /1-silicon effects in the electron-transfer reactions of acylsilanes. [Pg.58]

Remarkable positive shifts of the °red values of the singlet excited states of the metal ion-carbonyl complexes as compared to those of the triplet excited states of uncomplexed carbonyl compounds (Table 2) result in a significant increase in the redox reactivity of the Lewis acid complexes versus uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. For example, photoaddition of benzyltrimethylsilane with naphthaldehydes and acetonaphthones proceeds efficiently in the presence of Mg(C104)2 in MeCN, although... [Pg.256]

Trimethylsilyl triflate (McsSiOTf) acts as an even stronger Lewis acid than Sc(OTf)3 in the photoinduced electron-transfer reactions of AcrCO in dichloro-methane. In general, such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C—C bond formation between organosilanes and aromatic carbonyl compounds via the Lewis-acid-catalyzed photoinduced electron transfer. Formation of the radical ion pair in photoinduced electron transfer from PhCHiSiMes to the (l-NA) -Mg(C104)2 complex (Scheme 11) and the AcrCO -Sc(OTf)3 complex (Scheme 12) was confirmed by the laser flash experiments [113]. [Pg.259]

The most important application of organolithium reagents is their nucleophilic addition to carbonyl compounds. One of the simplest cases would be the reaction with the molecule CO itself, whose products are stable at room temperature. Recently, it was shown that a variety of RLi species are able to react with CO or f-BuNC in a newly developed liquid xenon (LXe) cell . LXe was used as reaction medium because it suppresses electron-transfer reactions, which are known to complicate the reaction . In this way the carbonyllithium and acyllithium compounds, as well as the corresponding isolobal isonitrile products, could be characterised by IR spectroscopy for the first time. [Pg.243]

The prototypically zero oxidation state complexes of the group are the binary hexacarbonyls M(CO)6. Early studies of the electrochemistry of these 18-electron closed-shell systems in nonaqueous electrolytes has perhaps been seminal in understanding the electron-transfer reactions of more substituted systems and of metal carbonyls in general. [Pg.389]

The ke[ values of photoinduced electron transfer reactions from [Ru(bpy)3]2 + to various nitrobenzene derivatives in the presence of 2.0 mol dm-3 HC104 are listed in Table 1, where the substituent effect is rather small irrespective of electron-withdrawing or donating substituents. A similar insensitivity to the substituent effect is also observed in the acid-catalyzed photoinduced electron transfer from [Ru(bpy)3]2+ to acetophenone derivatives [46,47]. The stronger the electron acceptor ability is, the weaker is the protonation ability, and vice versa. Thus, the reactivity of substrates in the acid-catalyzed electron transfer may be determined by two reverse effects, i.e., the proton and electron acceptor abilities, and they are largely canceled out. Such an insensitive substituent effect shows a sharp contrast with the substituent effect on the acid-catalyzed hydride transfer reactions from Et3SiH to carbonyl compounds, in which the reactivity of substrates is determined mainly by the protonation ability rather than the electron acceptor ability. [Pg.118]

The catalytic effect of metal ions such as Mg2+ and Zn2+ on the reduction of carbonyl compounds has extensively been studied in connection with the involvement of metal ions in the oxidation-reduction reactions of nicotinamide coenzymes [144-149]. Acceleration effects of Mg2+ on hydride transfer from NADH model compounds to carbonyl compounds have been shown to be ascribed to the catalysis on the initial electron transfer process, which is the rate-determining step of the overall hydride transfer reactions [16,87,149]. The Mg2+ ion has also been shown to accelerate electron transfer from cis-dialkylcobalt(III) complexes to p-ben-zoquinone derivatives [150,151]. In this context, a remarkable catalytic effect of Mg2+ was also found on photoinduced electron transfer reactions from various electron donors to flavin analogs in 1984 [152], The Mg2+ (or Zn2+) ion forms complexes with a flavin analog la and 5-deazaflavins 2a-c with a 1 1 stoichiometry in dry MeCN at 298 K [153] ... [Pg.143]

As demonstrated in this review, photoinduced electron transfer reactions are accelerated by appropriate third components acting as catalysts when the products of electron transfer form complexes with the catalysts. Such catalysis on electron transfer processes is particularly important to control the redox reactions in which the photoinduced electron transfer processes are involved as the rate-determining steps followed by facile follow-up steps involving cleavage and formation of chemical bonds. Once the thermodynamic properties of the complexation of adds and metal ions are obtained, we can predict the kinetic formulation on the catalytic activity. We have recently found that various metal ions, in particular rare-earth metal ions, act as very effident catalysts in electron transfer reactions of carbonyl compounds [216]. When one thinks about only two-electron reduction of a substrate (A), the reduction and protonation give 9 spedes at different oxidation and protonation states, as shown in Scheme 29. Each species can... [Pg.163]

It is now generally admitted that this reaction involves both one-electron and two-electron transfer reactions. Carbonyl compounds are directly produced from the two-electron oxidation of alcohols by both Crvl- and Crv-oxo species, respectively transformed into CrIV and Crm species. Chromium(IV) species generate radicals by one-electron oxidation of alcohols and are responsible for the formation of cleavage by-products, e.g. benzyl alcohol and benzaldehyde from the oxidation of 1,2-diphenyl ethanol.294,295 The key step for carbonyl compound formation is the decomposition of the chromate ester resulting from the reaction of the alcohol with the Crvl-oxo reagent (equation 97).296... [Pg.351]

The carbon dioxide anion radical was used for one-electron reductions of nitrobenzene diazonium cations, nitrobenzene itself, quinones, aliphatic nitro compounds, acetaldehyde, acetone and other carbonyl compounds, maleimide, riboflavin, and certain dyes (Morkovnik Okhlobystin 1979). This anion radical reduces organic complexes of Com and Rum into appropriate complexes of the metals in the valence 2 state (Morkovnik Okhlobystin 1979). In the case of the pentammino-p-nitrobenzoato-cobalt(III) complex, the electron-transfer reaction passes a stage of the formation of the Co(III) complex with the p-nitrophenyl anion radical fragment. This intermediate complex transforms into the final Co(II) complex with the p-nitrobenzoate ligand as a result of an intramolecular electron transfer. Scheme 1-89 illustrates this sequence of transformations ... [Pg.65]

This article is intended to review the published work on the photochemistry and photophysics of osmium complexes that has appeared in the literature over the past several years. We have attempted to cover, albeit somewhat selectively, literature dating back to the year 2000. A variety of reviews pertaining to particular aspects of osmium photophysics and photochemistry were published prior to 2000. A few reviews discuss the photophysical behavior of primarily monometallic Os complexes in solution [1,2]. Several earlier reviews discuss light induced energy and electron transfer reactions involving osmium complexes in much of this work the Os complex is not the chro-mophore [3-6]. Finally, one review exists discussing the photochemistry of Os carbonyl complexes [7]. [Pg.102]

As mentioned in Section 7.2, when the electron transfer reaction between electron-rich alkenes and excited carbonyl compounds is energetically favorable, the RI pair becomes an important intermediate in photochemical [2 + 2] cycloaddition reactions (Scheme 7.5). The regioselectivity of these reactions may differ from that observed for the PB reaction involving 1,4-triplet biradical intermediates. Typical examples of PB reactions with very electron-rich alkenes, ketene silyl acetals (Eox = 0.9 V vs SCE), have been reported (Scheme 7.11) [27]. Thus, 2-alkoxyoxetanes were selectively formed as a result of the PB reaction with benzaldehyde or benzophenone derivatives, whereas a selective formation of 3-alkoxyoxetanes was observed in less electron-rich alkenes (see Scheme 7.9). When p-methoxybenzalde-hyde was used in the photochemical reaction, the regioselectivity was less than that observed in the case of benzaldehyde. This dramatic decrease in regioselectivity provided evidence that the selective formation of 2-alkoxyoxetanes occurred via RI pair intermediates. It should be noted that the stereoselectivity is also completely different from that associated with triplet 1,4-biradicals (vide infra). [Pg.223]

A variety of intramolecular hydrogen-abstraction reactions from amino groups by carbonyl groups have been studied. There is no direct evidence that these reactions involve an intramolecular electron-transfer reaction. However, on the basis of studies on intermolecular systems, this is likely to be the case when the carbonyl group is part of an electron-accepting system, e.g. a quinone or phthalimide group. Quinone [153] was found to give [154], [155] and [156] (Scheme 35) (Maruyama et al., [911 Falci el al., 1977). [Pg.108]

The formation of a hydrogen bond between the amide proton and one carbonyl oxygen of NQ was indicated in the Ec + —NQ /M" complex to stabilize the complex (see above). Electron-transfer reactions were believed to be regulated through such noncovalent interactions that play an important role in biological ET systems, where electron donors and acceptors are usually bound to proteins at a fixed distance (123-127). Eor example, in the bacterial photosynthetic reaction center (bRC) from Rhodobacter Rb) sphaeroides, an electron is transferred from... [Pg.121]

The electron-transfer reactions of metal-carbonyl anions have been reviewed. Metal-carbonyl anions exhibit one-and two-electron reactions. The two-electron processes involving transfer of groups such as hydrogen, alkyl, and halogen between metal centers are related to the nucleophilicity of the anion involved. The one-electron processes are primarily outer-sphere electron transfers. However, in contrast to organic reactions, the metal-carbonyl anions can also undergo inner-sphere electron transfers. This is usually the case when an anion of low nucleophilicity transfers an electron to a metal-carbonyl cation or halide. [Pg.2577]

Figure 3 Proposed CODH mechanism. This mechanism proposes that the active state is Credl, consistent with recent electrochemical studies,which contains a hridghig hydroxide at the hinuclear NiFe center that serves as the nucleophile to attack a Ni-bound carbonyl forming a Ni-carboxylate. This OH, which is formed by acid-hase catalysis by indicated acid-base residues, is in the position of the bridging sulfide in the C. hydrogenoformans structure. The enzyme is proposed to remain in the Credl redox state until formation of CO2 when it becomes two-electrons reduced to the Cred2 state. Conversion of Credl to Cred2 occurs faster than electron transfer from Cred2 to the FeS clusters, which in turn reduce external electron acceptors. The electron transfer reactions are proposed to occur through a diamagnetic Cint state. ... Figure 3 Proposed CODH mechanism. This mechanism proposes that the active state is Credl, consistent with recent electrochemical studies,which contains a hridghig hydroxide at the hinuclear NiFe center that serves as the nucleophile to attack a Ni-bound carbonyl forming a Ni-carboxylate. This OH, which is formed by acid-hase catalysis by indicated acid-base residues, is in the position of the bridging sulfide in the C. hydrogenoformans structure. The enzyme is proposed to remain in the Credl redox state until formation of CO2 when it becomes two-electrons reduced to the Cred2 state. Conversion of Credl to Cred2 occurs faster than electron transfer from Cred2 to the FeS clusters, which in turn reduce external electron acceptors. The electron transfer reactions are proposed to occur through a diamagnetic Cint state. ...
Carbene Complexes Carbonyl Complexes ofthe Transition Metals Cyanide Complexes of the Transition Metals Dinuclear Organometallic Cluster Complexes Electron Transfer in Coordination Compounds Electron Transfer Reactions Theory Electronic Structure of Organometallic Compounds Luminescence Nucleic Acid-Metal Ion Interactions Photochemistry of Transition Metal Complexes Photochemistry of Transition Metal Complexes Theory Polynuclear Organometallic Cluster Complexes. [Pg.5442]

In addition to standard methods of monitoring the reaction progress by UV and visible spectroscopies, other detection methods also can be used. For example, electron-transfer reactions between monomeric and dimeric metal carbonyl complexes in Eq. 11 have been studied by infrared stopped-flow spectroscopy utilizing a tunable CO laser as a source of infrared radiation and a HgCdGe detector [12]. [Pg.478]


See other pages where Carbonyl electron transfer reaction is mentioned: [Pg.223]    [Pg.193]    [Pg.389]    [Pg.143]    [Pg.157]    [Pg.32]    [Pg.101]    [Pg.174]    [Pg.123]    [Pg.428]    [Pg.111]    [Pg.117]    [Pg.1]    [Pg.84]    [Pg.85]    [Pg.89]    [Pg.113]    [Pg.655]    [Pg.2576]    [Pg.2853]    [Pg.752]    [Pg.56]    [Pg.911]    [Pg.1122]    [Pg.1123]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Carbonyl complexes, electron-transfer reactions

Carbonyl transfer reaction

Cobalt complexes, electron-transfer reactions carbonyl

Electron-transfer Reactions of Carbonyl Compounds

Electron-transfer reactions with carbonyl anions

Iron complexes, electron-transfer reactions carbonyls

© 2024 chempedia.info