Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds stereoselectivity

Brown, M. J., Harrison, T., Herrinton, P. M., Hopkins, M. H., Hutchinson, K. D., Overman, L. E., Mishra, P. Acid-promoted reaction of cyclic allylic diols with carbonyl compounds. Stereoselective ring-enlarging tetrahydrofuran annulations. J. Am. Chem. Soc. 1991,113, 5365-5378. [Pg.658]

Allyltri- -butyltin usually requires activation to perform effective allylation of carbonyl compounds. Stereoselective reactions occasionally occur in the presence of the strong Lewis acids TiCU, SnCU, and BF3-OEt2. These conventional Lewis acids cannot, however, be used for chemoselective allylation of carbonyl compounds bearing other reactive functional groups, because of further transformation and decomposition of the products. It has been found that the lead diiodide-HMPA complex is a good catalyst for chemo- and diastereoselective allylation of a,73-epoxy ketones under mild neutral conditions (Scheme 13.62) [81]. [Pg.745]

Sato F, Kusakabe M, Kobayashi Y (1984) Highly diastereofacial selective addition of nucleophiles to 2-alkyl-3-trimethylsilylalk-3-enyl carbonyl compounds. Stereoselective preparation of P-methyl-homoallyl alcohols and p-hydroxy-a-methyl ketones. J Chem Soc Chem Common 1130-1132... [Pg.389]

Alcohols can be synthesized by the addition of carbanions to carbonyl compounds (W.C. Still, 1976) or epoxides. Both types of reactions often produce chiral centres, and stereoselectivity is an important aspect of these reactions. [Pg.44]

A classical reaction leading to 1,4-difunctional compounds is the nucleophilic substitution of the bromine of cf-bromo carbonyl compounds (a -synthons) with enolate type anions (d -synthons). Regio- and stereoselectivities, which can be achieved by an appropiate choice of the enol component, are similar to those described in the previous section. Just one example of a highly functionalized product (W.L. Meyer, 1963) is given. [Pg.63]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

Synthetically useful stereoselective reductions have been possible with cyclic carbonyl compounds of rigid conformation. Reduction of substituted cyclohexanone and cyclopentan-one rings by hydrides of moderate activity, e.g. NaBH (J.-L. Luche, 1978), leads to alcohols via hydride addition to the less hindered side of the carbonyl group. Hydrides with bulky substituents 3IQ especially useful for such regio- and stereoselective reductions, e.g. lithium hydrotri-t-butoxyaluminate (C.H. Kuo, 1968) and lithium or potassium tri-sec-butylhydro-borates or hydrotri-sec-isoamylborates (=L-, K-, LS- and KS-Selectrides ) (H.C. Brown, 1972 B C.A. Brown, 1973 S. Krishnamurthy, 1976). [Pg.107]

The stereoselectivity of organometallic additions with carbonyl compounds fits into the general pattern for nucleophilic attack discussed in Chapter 3. With 4-r-butylcyclohex-anone, there is a preference for equatorial approach but the selectivity is low. Enhanced steric factors promote stereoselective addition. [Pg.466]

Analyze the factors which would determine stereoselectivity in the addition of organometallic compoimds to the following carbonyl compounds. Predict the major product. [Pg.499]

Triflates of titanium and tin are effective catalysts for various condensations of carbonyl compounds [I2I, 122, 123, 124, 125] Claisen and Dieckmann type condensations between ester functions proceed under mild conditions in the presence of dichlorobis(trifluoromethanesulfonyloxy)titaiiiuin(rV) and a tertiary amine (equations 59 and 60) These highly regio- and stereoselective condensations were used successfully m the synthesis of carbohydrates [122]... [Pg.964]

The chemical reduction of enamines by hydride again depends upon the prior generation of an imonium salt (111,225). Thus an equivalent of acid, such as perchloric acid, must be added to the enamine in reductions with lithium aluminum hydride. Studies of the steric course (537) of lithium aluminum hydride reductions of imonium salts indicate less stereoselectivity in comparison with the analogous carbonyl compounds, where an equatorial alcohol usually predominates in the reduction products of six-membered ring ketones. [Pg.428]

Stereoselectivity in the condensation reaction of 2-arylethylamines with carbonyl compounds to give 1,2,3,4-tetrahydroisoquinoline derivatives was somewhat dependent on whether acid catalysis or superacid catalysis was invoked. Particularly in the cases of 2-alkyl-N-benzylidene-2-phenethylamines, an enhanced stereoselectivity was observed with trifluorosulfonic acid (TFSA) as compared with the weaker acid, trifluoroacetic acid (TFA). Compound 43 was cyclized in the presence of TFA to give modest to good transicis product ratios. The analogous compound 44 was cyclized in the presence of TFSA to give slightly improved transicis product ratios. [Pg.475]

There has been recent interest in naphtho-fused dithiepines as chiral acyl anion equivalents, particularly since the starting dithiol 128 can be obtained in enan-tiomerically pure form (89TL2575). This is transformed using standard methods into the dithiepine 129, but showed only moderate diastereoselectivity in its addition to carbonyl compounds. On the other hand, as we have seen previously for other systems, formation of the 2-acyl compound 130 and reduction or addition of a Grignard reagent gave the products 131 with much better stereoselectivity (91JOC4467). [Pg.108]

Me- SiCl also affects the stereoselectivity of 1,2-additions to carbonyl compounds [ 133]. Witli the aid of suitable activators, these mildly reactive reagents show selec-tivities unattainable by the conventional reagents, as ilustrated below for Me- SiCl-dependent Chemoselectivity fEq. 10.13) [134]. [Pg.334]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]

The stereoselectivity of an addition reaction is considerably lower when the reactions are conducted in polar solvents, complexing additives such as /V./V,A. A, -tetramethylethylenedi-arnine arc used, or when the stereogenic center carries a methoxy group instead of a hydroxy group. This behavior is explained as competition between the cyclic model and a dipolar model, proposed for carbonyl compounds bearing a polar substituent such as chlorine with a highly... [Pg.2]

Table 1. 2-Propenylmetal Reagents for the Stereoselective Introduction of the 2-Propenyl Anion to Carbonyl Compounds... Table 1. 2-Propenylmetal Reagents for the Stereoselective Introduction of the 2-Propenyl Anion to Carbonyl Compounds...
Allyl anion synthons A and C, bearing one or two electronegative hetero-substituents in the y-position are widely used for the combination of the homoenolate (or / -enolate) moiety B or D with carbonyl compounds by means of allylmetal reagents 1 or 4, since hydrolysis of the addition products 2 or 5 leads to 4-hydroxy-substituted aldehydes or ketones 3, or carboxylic acids, respectively. At present, 1-hetero-substituted allylmetal reagents of type 1, rather than 4, offer the widest opportunity for the variation of the substitution pattern and for the control of the different levels of stereoselectivity. The resulting aldehydes of type 3 (R1 = H) are easily oxidized to form carboxylic acids 6 (or their derivatives). [Pg.226]

The addition of a vast number of mainly hetero-substituted allyllithium derivatives to carbonyl compounds has been studied, yet only a few examples proceeding with a preparatively useful level of stereoselectivity have been reported. As many methods were developed before the crucial role of the cation was realized, improvements are possible by simple metal exchange. Some reviews, which collect these reagents, arc cited in Section D.l.3.3.3.1.1. [Pg.239]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

The complexation of achiral metal enolates by chiral additives, e.g., solvents or complexing agents could, in principle, lead to reagent-induced stereoselectivity. In an early investigation, the Reformatsky reaction of ethyl bromoacetate was performed in the presence of the bidentate ligand (—)-sparteine20. The enantioselectivity of this reaction varies over a wide range and depends on the carbonyl Compound, as shown with bcnzaldehyde and acetophenone. [Pg.580]

I.3.5.6.3. Stereoselective Addition to Enantiomerically Pure Carbonyl Compounds... [Pg.634]

Acyloins (a-hydroxy ketones) are formed enzymatically by a mechanism similar to the classical benzoin condensation. The enzymes that can catalyze reactions of this type arc thiamine dependent. In this sense, the cofactor thiamine pyrophosphate may be regarded as a natural- equivalent of the cyanide catalyst needed for the umpolung step in benzoin condensations. Thus, a suitable carbonyl compound (a -synthon) reacts with thiamine pyrophosphate to form an enzyme-substrate complex that subsequently cleaves to the corresponding a-carbanion (d1-synthon). The latter adds to a carbonyl group resulting in an a-hydroxy ketone after elimination of thiamine pyrophosphate. Stereoselectivity of the addition step (i.e., addition to the Stand Re-face of the carbonyl group, respectively) is achieved by adjustment of a preferred active center conformation. A detailed discussion of the mechanisms involved in thiamine-dependent enzymes, as well as a comparison of the structural similarities, is found in references 1 -4. [Pg.672]

The considerable synthetic utility of vinylsilanes (1) is governed by the availability of suitable stereoselective routes. Most existing methodologies start from either alkynes, carbonyl compounds or vinyl halides. [Pg.98]

Thus unsubstituted (R=H) and substituted (R = alkyl) non-stabilized diyiides 1 react with phenylisocyanate and dicyclohexylcarbodiimide (R NCX), leading to the formation of new monoylide type intermediates. These last ones react in situ with carbonyl compounds through a Wittig type reaction leading respectively to a,)8-unsaturated amides 2 and amidines 3, with a high E stereoselectivity, the double bond being di- or tri-substituted [48,49]. By a similar reactional pathway, diyiides also react with carbonic acid derivatives, with the synthesis as final products of -a,/l-unsaturated esters 4 and acids 5 [50]. [Pg.48]

Although considerable progress has been made in metal-catalyzed preparations of non-racemic cyanohydrins, the HNL-catalyzed reaction is still the most important method for the synthesis of chiral cyanohydrins, especially for large-scale reactions. The usefulness of HNLs as catalysts for the stereoselective addition of HCN to carbonyl compounds has increased substantially because (7 )-PaHNL... [Pg.153]


See other pages where Carbonyl compounds stereoselectivity is mentioned: [Pg.45]    [Pg.44]    [Pg.65]    [Pg.106]    [Pg.62]    [Pg.467]    [Pg.303]    [Pg.43]    [Pg.60]    [Pg.105]    [Pg.119]    [Pg.142]    [Pg.731]    [Pg.66]    [Pg.732]    [Pg.812]    [Pg.193]    [Pg.293]    [Pg.66]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.680 , Pg.681 ]




SEARCH



Carbonyl compounds catalytic stereoselective

Carbonyl compounds stereoselective addition

Carbonyl compounds stereoselective olefination

Carbonyl reduction chiral compound stereoselective synthesis

Carbonylation, stereoselective

Stereoselectivity compounds

Stereoselectivity with carbonyl compounds

Unsaturated carbonyl compounds stereoselective

© 2024 chempedia.info