Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds cycloaddition with alkenes

Two different alkenes can be brought to reaction to give a [2 -I- 2] cycloaddition product. If one of the reactants is an o, /3-unsaturated ketone 11, this will be easier to bring to an excited state than an ordinary alkene or an enol ether e.g. 12. Consequently the excited carbonyl compound reacts with the ground state enol ether. By a competing reaction pathway, the Patemo-Buchi reaction of the 0, /3-unsaturated ketone may lead to formation of an oxetane, which however shall not be taken into account here ... [Pg.78]

Aside from the relatively trivial conversions of nitronates to the corresponding oxime and carbonyl compounds (10,11), the chemistry of nitronates remained relatively unexplored for much of the early 1900s. However, in 1964, Tartakovskii et al. (12) demonstrated that alkyl nitronate esters were competent partners in the newly discovered class of dipolar cycloadditions with alkenes (Scheme 2.1). Both cyclic and acyclic nitronates participated, thus providing a new functional group were the nitrogen atom existed at the center of an acetal (13). These compounds were subsequently referred to as nitroso acetals (14) or nitrosals (15). [Pg.85]

Nitrones can be activated mainly in two different ways for the 1,3-dipolar cycloaddition with alkenes. In the reaction between a nitrone and an electron-dehcient alkene, such as an a,p-unsaturated carbonyl compound (a normal electron-demand reaction), it is primarily controlled by the interaction between HOMOnitrone-LUMOaikene (Scheme 12.64). By coordination of a Lewis acid (LA) catalyst to the a,p-unsaturated carbonyl compound, the LUMOaikene energy decreases and a better interaction with the nitrone can take place (16,17). [Pg.864]

If you see a four-membered ring, think [2 + 2] cycloaddition, especially if the ring is a cyclobutanone (ketene) or light is required (photochemically allowed). Ketenes and other cumulenes undergo [2 + 2] cycloadditions with special facility. An oxetane (four-membered ring with one O) is often obtained from the [2 + 2] photocycloaddition of a carbonyl compound and an alkene. [Pg.182]

Another type of multicomponent [2 + 2+1] cycloaddition is achieved with diazo carbonyl compounds in the presence of rhodium or copper catalysts. Reaction with additional carbonyl groups within the substrate gives carbonyl ylides. These, as formal 1,3-dipoles, can undergo [3 + 2] cycloaddition with alkenes or alkynes to form heterocyclic ring systems,7 83... [Pg.495]

From current discussions one common feature arises, that is, the proposal of 1,4-diradicals as reactive intermediates in cycloadditions via the (nn ) triplet state. These intermediates have been directly detected using time resolved spectroscopy and the data are consistent with direct attack of the carbonyl compound on the alkene, this holds true at least in the case of benzophe-none and 2,3-dihydro-1.4-dioxin14. [Pg.931]

A type of 1,3-dipole that has received considerable recent interest is the carbonyl ylide. One method for its formation makes use of carbenoid chemistry (see Section 4.2). Cyclization of an electrophiUc rhodium carbenoid onto a nearby carbonyl group provides access to the carbonyl ylide. Cycloaddition with an alkyne or alkene dipolarophile then gives the dihydro- or tetrahydrofuran product. For example, the carbonyl ylide 235, formed from the diazo compound 234 and rhodium(II) acetate, reacts with dimethyl acetylenedicarboxylate to give the bridged dihydrofuran 236 (3.148). [Pg.230]

As was mentioned in Section 13.2, the [27t + 27i] photocycloaddition of alkenes is an allowed reaction according to orbital symmetry considerations. Among the most useful reactions in this categoty, from a synthetic point of view, are intramolecular [27t + 2ti] cycloadditions of dienes and intermolecular [2ti + 2ti] cycloadditions of alkenes with cyclic a, -unsaturated carbonyl compounds. These reactions will be discussed in more detail in Section 6.4 of Part B. [Pg.771]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

Lewis-acid-catalyzed cycloadditions of dienophiles, such as a,/l-unsaturated carbonyl compounds, with open-chain carbon-dienes, are generally highly ortho-para regioselective because the oxygen complexation increases the difference of LUMO coefficients of the alkene moiety. [Pg.23]

E) alkenes. One explanation for this is that the reaction of the ylid with the carbonyl compound is a 2-1-2 cycloaddition, which in order to be concerted must adopt the [rt2s+n2al pathway. As we have seen earlier (p. 1079), this pathway leads to the formation of the more sterically crowded product, in this case the (Z) alkene. If this explanation is correct, it is not easy to explain the predominant formation of ( ) products from stable ylids, but (E) compounds are of course generally thermodynamically more stable than the (Z) isomers, and the stereochemistry seems to depend on many factors. [Pg.1235]

Scheme 30a,b [2 + 2] Cycloaddition reactions of excited carbonyl compounds with the alkenes substituted by electron-accepting (a) and -donating (b) groups... [Pg.21]

Scheme 6 Mechanistic spectrum of [2+2] cycloaddition of carbonyl compounds with alkenes and atkynes... Scheme 6 Mechanistic spectrum of [2+2] cycloaddition of carbonyl compounds with alkenes and atkynes...
Photocycloaddition of Alkenes and Dienes. Photochemical cycloadditions provide a method that is often complementary to thermal cycloadditions with regard to the types of compounds that can be prepared. The theoretical basis for this complementary relationship between thermal and photochemical modes of reaction lies in orbital symmetry relationships, as discussed in Chapter 10 of Part A. The reaction types permitted by photochemical excitation that are particularly useful for synthesis are [2 + 2] additions between two carbon-carbon double bonds and [2+2] additions of alkenes and carbonyl groups to form oxetanes. Photochemical cycloadditions are often not concerted processes because in many cases the reactive excited state is a triplet. The initial adduct is a triplet 1,4-diradical that must undergo spin inversion before product formation is complete. Stereospecificity is lost if the intermediate 1,4-diradical undergoes bond rotation faster than ring closure. [Pg.544]

A second category of silene reactions involves interactions with tt-bonded reagents which may include homonuclear species such as 1,3-dienes, alkynes, alkenes, and azo compounds as well as heteronuclear reagents such as carbonyl compounds, imines, and nitriles. Four modes of reaction have been observed nominal [2 + 2] cycloaddition (thermally forbidden on the basis of orbital symmetry considerations), [2 + 4] cycloadditions accompanied in some cases by the products of apparent ene reactions (both thermally allowed), and some cases of (allowed) 1,3-dipolar cycloadditions. [Pg.28]

Cycloaddition reactions between alkenes and noncarbohydrate, carbonyl compounds have been described in discussing the reactions of alkenes (see Table I and Scheme 1). The depiction of the excited carbonyl given in Scheme 6 is useful in understanding the regiochem-istry of the cycloaddition process, as it suggests that the electron-deficient oxygen atom in the excited carbonyl will react with the alkene to produce the (more-stable) 1,4-diradical. Table VIII lists cycloaddition reactions in which the excited carbonyl is part of a carbohydrate. [Pg.129]

Cycloreversion of four-membered metallacycles is the most common method for the preparation of high-valent titanium [26,27,31,407,599-606] and zirconium [599,601] carbene complexes. These are usually very reactive, nucleophilic carbene complexes, with a strong tendency to undergo C-H insertion reactions or [2 -F 2] cycloadditions to alkenes or carbonyl compounds (see Section 3.2.3). Figure 3.31 shows examples of the generation of titanium and zirconium carbene complexes by [2 + 2] cycloreversion. [Pg.100]

Isosydnones (146) react with alkynes to give pyrazoles (150). For example, 4,5-diphenylisosydnone (146, R = R = Ph) and ethyl phenyl propiolate gives 4-ethoxycarbonyl-l,3,5-triphenylpyrazole (150, R = R = R = Ph, R = CO Et) identical with the product from 4,5-diphenylsydnone (1, R = R = Ph). The rate of 1,3-cycloaddition for isosydnones (146) is relatively slow in comparison with sydnones (1).2o, 04 number of other cycloaddition reactions of isosydnones with alkenes, alkynes, and carbonyl compounds have been reported. ... [Pg.33]

Saito et al. (32,121) developed a variety of tartaric acid derivatives, including Ci-symmetric chiral alkenes such as 76. The 1,3-dipolar cycloaddition between 76 and 77 gave primarily endo-1%. (Scheme 12.26) The diastereofacial selectivity of the reaction is excellent, as endo-1% is obtained with >98% de. Other cyclic and acyclic nitrones have been employed in reactions with 76, and in all cases, moderate to excellent endo/exo-selectivities and excellent diastereofacial selectiv-ities were obtained (32,121). Three other research groups have applied various y-hydroxylated ot,p-unsaturated carbonyl compounds in related reactions with nitrones (122-124). However, the selectivities were somewhat lower than those obtained by Saito and et al. (32,121). [Pg.836]

By analogy with the formation of dihydropyrans from unsaturated carbonyl compounds and alkenes (see Section 2.24.2.7.l(i)), the synthesis of 4//-pyrans from the [4 + 23-cycloaddition of unsaturated carbonyl compounds and alkynes would seem to offer some potential. Such a reaction has indeed proved of value, but examples are largely restricted to the use of ynamines as the dienophile (76BSF987). [Pg.760]

Dihydroisoxazoles with a substituent at nitrogen are most conveniently prepared by 1,3-dipolar cycloaddition of nitrones to alkenes or alkynes. Nitrones are usually prepared in situ from carbonyl compounds and /V-(alkyl)hydroxylamines (Figure 15.10). [Pg.418]

Ruthenium tetroxide is a four-electron oxidant which directly transforms alkenic compounds into oxidative cleavage products, i.e. carbonyl compounds and carboxylic acids.288 The reaction can be visualized as proceeding according to a [4 + 2] cycloaddition of the cis-dioxo moiety with the alkene, resulting in the formation of a RuVI cyclic diester which decomposes to ruthenium(IV) dioxide and oxidative cleavage products (equation 114).288 This reaction can be made catalytic... [Pg.357]


See other pages where Carbonyl compounds cycloaddition with alkenes is mentioned: [Pg.220]    [Pg.332]    [Pg.153]    [Pg.214]    [Pg.218]    [Pg.22]    [Pg.196]    [Pg.103]    [Pg.315]    [Pg.105]    [Pg.51]    [Pg.218]    [Pg.178]    [Pg.497]    [Pg.543]    [Pg.82]    [Pg.396]    [Pg.477]    [Pg.421]    [Pg.523]    [Pg.396]    [Pg.771]    [Pg.1098]    [Pg.193]   
See also in sourсe #XX -- [ Pg.1132 , Pg.1133 ]




SEARCH



Alkenations carbonyl compounds

Alkene, carbonyl compounds

Alkenes 2+2]cycloaddition

Alkenes carbonylation

Alkenes with carbonyl compounds

Alkenes, cycloadditions

Carbonyl compounds cycloadditions

Carbonylative cycloadditions

Cycloaddition carbonylative

Cycloaddition carbonyls with alkenes

Cycloaddition compounds

Cycloaddition with

With Carbonyl Compounds

© 2024 chempedia.info