Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds, addition reactions hydration

Like hydration, these addition reactions are governed by equilibria that usually favor the starting carbonyl compound. Hemiacetals, like hydrates, are therefore usually not isolable. Exceptions are those formed from reactive carbonyl compounds such as formaldehyde or 2,2,2-trichloroacetaldehyde. Hemiacetals are also isolable from hydroxy aldehydes and ketones when cyclization leads to the formation of relatively strain-free five- and six-membered rings. [Pg.754]

The equilibrium constants for addition of alcohols to carbonyl compounds to give hemiacetals or hemiketals show the same response to structural features as the hydration reaction. Equilibrium constants for addition of metiianoHb acetaldehyde in both water and chloroform solution are near 0.8 A/ . The comparable value for addition of water is about 0.02 The overall equilibrium constant for formation of the dimethyl acetal of... [Pg.452]

The mechanistic pattern established by study of hydration and alcohol addition reactions of ketones and aldehydes is followed in a number of other reactions of carbonyl compounds. Reactions at carbonyl centers usually involve a series of addition and elimination steps proceeding through tetrahedral intermediates. These steps can be either acid-catalyzed or base-catalyzed. The rate and products of the reaction are determined by the reactivity of these tetrahedral intermediates. [Pg.456]

The carbonyl compound to be reduced (0.1 mole) is placed in a 250-ml round-bottom flask with 13.5 g of potassium hydroxide, 10 ml of 85% hydrazine hydrate, and 1(X) ml of diethylene glycol. A reflux condenser is attached and the mixture is heated to reflux for I hour (mantle). After refluxing 1 hour, the condenser is removed and a thermometer is immersed in the reaction mixture while slow boiling is continued to remove water. When the pot temperature has reached 200°, the condenser is replaced and refluxing is continued for an additional 3 hours. The mixture is then cooled, acidified with concentrated hydrochloric acid, and extracted with benzene. The benzene solution is dried, and the benzene is evaporated to afford the crude product, which is purified by recrystallization or distillation. [Pg.55]

Both these methods require equilibrium constants for the microscopic rate determining step, and a detailed mechanism for the reaction. The approaches can be illustrated by base and acid-catalyzed carbonyl hydration. For the base-catalyzed process, the most general mechanism is written as general base catalysis by hydroxide in the case of a relatively unreactive carbonyl compound, the proton transfer is probably complete at the transition state so that the reaction is in effect a simple addition of hydroxide. By MMT this is treated as a two-dimensional reaction proton transfer and C-0 bond formation, and requires two intrinsic barriers, for proton transfer and for C-0 bond formation. By NBT this is a three-dimensional reaction proton transfer, C-0 bond formation, and geometry change at carbon, and all three are taken as having no barrier. [Pg.20]

Incorporation of lsO into the ketone occurs hardly at all under these conditions, i.e. at pH 7, but in the presence of a trace of acid or base it occurs [via the hydrate (13)] very rapidly indeed. The fact that a carbonyl compound is hydrated will not influence nucleophilic additions that are irreversible it may, however, influence the position of equilibrium in reversible addition reactions, and also the reaction rate, as... [Pg.207]

Carbonyl hydration has been extensively studied primarily because it serves as a model for a number of important reactions, nucleophilic additions to carbonyl compounds foremost around them. While for most common carbonyl compounds the equilibrium lies far to the left (in favor of the carbonyl compound), it is possible to find compounds where the reverse is true. Because there are ample experimental data, it should be possible to identify structural and/or other characteristics which drive the equilibrium one way or the other. Alternatively, quantum chemical models can be employed. [Pg.448]

One of the simplest biochemical addition reactions is the hydration of carbon dioxide to form carbonic acid, which is released from the zinc-containing carbonic anhydrase (left, Fig. 13-1) as HC03-. Aconitase (center, Fig. 13-4) is shown here removing a water molecule from isocitrate, an intermediate compound in the citric acid cycle. The H20 that is removed will become bonded to an iron atom of the Fe4S4 cluster at the active site as indicated by the black H20. An enolate anion derived from acetyl-CoA adds to the carbonyl group of oxaloacetate to form citrate in the active site of citrate synthase (right, Fig. 13-9) to initiate the citric acid cycle. [Pg.676]

The probable mechanism of the reaction is first addition of piperidine to formaldehyde to form /V-hydroxymethylpiperidine. This reacts with acidic hydrogens of the methyl group of 1,1,1-trifluoroacetone, which is hydrated because the trifluoromethyl group next to carbonyl stabilizes the hydrated form of the carbonyl compound. The resulting dihydrate is further stabilized by hydrogen bonds to the piperidine nitrogen 103. ... [Pg.93]

There are many examples of acid catalyzed carbonyl addition reactions, such as formation of hydrates (R2C(OH)2), hemiacetals, hemiketals, cyanohydrins, bisulfite compounds, azomethines, oximes, hydrazones, etc. These important reactions are discussed in Vol. 11. [Pg.31]

Ethynyl carbinols (propargylic alcohols) such as 134 (Scheme 2.58) represent another important group of oxidation level 3 compounds. Their preparation involves nucleophilic addition of acetylides to the carbonyl group, a reaction that is nearly universal in its scope. Elimination of water from 134 followed by hydration of the triple bond is used as a convenient protocol for the preparation of various conjugated enones 135. Easily prepared O-acylated derivatives are extremely useful electrophiles in reactions with organocuprates, which proceed with propargyl-allenyl rearrangements to furnish allene derivatives 136. [Pg.109]

Alcohols may be prepared by the hydrolysis of alkyl halides and esters, the reduction of carbonyl compounds, the addition of carbanions to carbonyl groups and the hydration of alkenes. Although these reactions are discussed in detail in the separate sections concerning these functional groups, they are brought together here to show the inter-relationship of these functional groups with alcohols. [Pg.34]


See other pages where Carbonyl compounds, addition reactions hydration is mentioned: [Pg.1176]    [Pg.6]    [Pg.76]    [Pg.354]    [Pg.13]    [Pg.107]    [Pg.34]    [Pg.145]    [Pg.278]    [Pg.883]    [Pg.360]    [Pg.409]    [Pg.402]    [Pg.282]    [Pg.242]    [Pg.176]    [Pg.213]    [Pg.22]    [Pg.4]    [Pg.1262]    [Pg.496]    [Pg.310]    [Pg.13]    [Pg.72]   


SEARCH



Addition compounds hydrates

Addition reactions compounds

Addition reactions hydration

Carbonyl addition reactions

Carbonyl compounds addition reactions

Carbonyl compounds hydration

Carbonyl compounds, addition

Carbonyl compounds, reactions

Carbonyl hydrates

Carbonyl hydration

Carbonyl, addition

Carbonylation additive

Hydrated compounds

Hydration additives

Hydration reactions

© 2024 chempedia.info