Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonic anhydrase structure

Y. Pocker, E. S. Sarkanen, Carbonic Anhydrase Structure Catalytical Versatility and Inhibition , Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 47, 149 - 274. [Pg.96]

Z, ] McClarin, T Klein and R Langridge 1985. A Quantitative Structure-Activity Relationship and ecular Graphics Study of Carbonic Anhydrase Inhibitors. Molecular Pharmacology 27 493-498. [Pg.738]

Thiadiazole-2-suifonamide, 5-acetamido-carbonic anhydrase inhibitor, 6, 576 crystal structure, 6, 548... [Pg.864]

Micelles in water are described as spherical aggregates of a surfactant monomer27 30). They somewhat resemble to enzyme proteins in structures and functions, although the details are yet the subjects of recent controversies 29,30). There are numerous studies of micellar models of enzymes 28), but the examples of those of metalloenzymes are very few 31 37). In particular, there are no examples of micellar models of carboxypeptidase or carbonic anhydrase except ours 36,37). [Pg.153]

The value of the tris(pyrazolyl)hydroborato complexes [TpRR ]ZnOH is that they are rare examples of monomeric four-coordinate zinc complexes with a terminal hydroxide funtionality. Indeed, [TpBut]ZnOH is the first structurally characterized monomeric terminal hydroxide complex of zinc (149). As such, the monomeric zinc hydroxide complexes [TpRR ]ZnOH may be expected to play valuable roles as both structural and functional models for the active site of carbonic anhydrase. Although a limitation of the [TpRR ]ZnOH system resides with their poor solubility in water, studies on these complexes in organic solvents... [Pg.355]

Carbonic anhydrase (CA) exists in three known soluble forms in humans. All three isozymes (CA I, CA II, and CA III) are monomeric, zinc metalloenzymes with a molecular weight of approximately 29,000. The enzymes catalyze the reaction for the reversible hydration of C02. The CA I deficiency is known to cause renal tubular acidosis and nerve deafness. Deficiency of CA II produces osteopetrosis, renal tubular acidosis, and cerebral calcification. More than 40 CA II-defi-cient patients with a wide variety of ethnic origins have been reported. Both syndromes are autosomal recessive disorders. Enzymatic confirmation can be made by quantitating the CA I and CA II levels in red blood cells. Normally, CA I and CAII each contribute about 50% of the total activity, and the CAI activity is completely abolished by the addition of sodium iodide in the assay system (S22). The cDNA and genomic DNA for human CA I and II have been isolated and sequenced (B34, M33, V9). Structural gene mutations, such as missense mutation, nonsense... [Pg.36]

As an illustration, we briefly discuss the SCC-DFTB/MM simulations of carbonic anhydrase II (CAII), which is a zinc-enzyme that catalyzes the interconversion of CO2 and HCO [86], The rate-limiting step of the catalytic cycle is a proton transfer between a zinc-bound water/hydroxide and the neutral/protonated His64 residue close to the protein/solvent interface. Since this proton transfer spans at least 8-10 A depending on the orientation of the His 64 sidechain ( in vs. out , both observed in the X-ray study [87]), the transfer is believed to be mediated by the water molecules in the active site (see Figure 7-1). To carry out meaningful simulations for the proton transfer in CAII, therefore, it is crucial to be able to describe the water structure in the active site and the sidechain flexibility of His 64 in a satisfactory manner. [Pg.182]

The X-ray structure of the unsubstituted tris(pyrazolyl)borato zinc nitrate has been solved showing a unidentate coordination mode for nitrate, in contrast with the t-butyl substituted ligand, which shows anisobidentate nitrate coordination due to the steric effects.232 A partial explanation of the reduced activity of cadmium-substituted carbonic anhydrase is offered by Parkin on the basis of the comparison of nitrate coordination to cadmium and zinc trispyrazo-lylborate moieties. A contributing factor may be the bidentate coordination supported by the cadmium that does not allow the facile access to a unidentate bicarbonate intermediate, which could be highly important to carbonic anhydrase activity.233... [Pg.1163]

The zinc acetate complex of tris(3-/-butyl-5-methylpyrazol-l-yl)borate was prepared as a structural model for carbonic anhydrase and comparison with the enzyme active site structures confirmed that the complexes are excellent structural models.239 A mononuclear zinc hydroxide complex can also be formed with the tris(pyrazolyl) borate ligand system as a structural model for carbonic anhydrase.240... [Pg.1164]

CO3 species was formed and the X-ray structure solved. It is thought that the carbonate species forms on reaction with water, which was problematic in the selected strategy, as water was produced in the formation of the dialkyl carbonates. Other problems included compound solubility and the stability of the monoalkyl carbonate complex. Van Eldik and co-workers also carried out a detailed kinetic study of the hydration of carbon dioxide and the dehydration of bicarbonate both in the presence and absence of the zinc complex of 1,5,9-triazacyclododecane (12[ane]N3). The zinc hydroxo form is shown to catalyze the hydration reaction and only the aquo complex catalyzes the dehydration of bicarbonate. Kinetic data including second order rate constants were discussed in reference to other model systems and the enzyme carbonic anhy-drase.459 The zinc complex of the tetraamine 1,4,7,10-tetraazacyclododecane (cyclen) was also studied as a catalyst for these reactions in aqueous solution and comparison of activity suggests formation of a bidentate bicarbonate intermediate inhibits the catalytic activity. Van Eldik concludes that a unidentate bicarbonate intermediate is most likely to the active species in the enzyme carbonic anhydrase.460... [Pg.1185]

Synthesis of functional models of carbonic anhydrase has been attempted with the isolation of an initial mononuclear zinc hydroxide complex with the ligand hydrotris(3-t-butyl-5-methyl-pyrazolyl)borate. Vahrenkamp and co-workers demonstrate the functional as well as the structural analogy to the enzyme carbonic anhydrase. A reversible uptake of carbon dioxide was observed, although the unstable bicarbonate complex rapidly forms a dinuclear bridged complex. In addition, coordinated carbonate esters have been formed and hydrolyzed, and inhibition by small ions noted.462 A number of related complexes are discussed in the earlier Section 6.8.4. [Pg.1185]

Theoretical calculations have been carried out on a number of zinc-containing enzymatic systems. For example, calculations on the mechanism of the Cu/Zn enzyme show the importance of the full protein environment to get an accurate description of the copper redox process, i.e., including the electronic effects of the zinc ion.989 Transition structures at the active site of carbonic anhydrase have been the subject of ab initio calculations, in particular [ZnOHC02]+, [ZnHC03H20]+, and [Zn(NH3)3HC03]+.990... [Pg.1234]

The near-UV CD spectrum of carbonic anhydrase (Fig. 39) is rather strong and displays substantial fine structure at pH 7 (Wong and Hamlin, 1974). In the molten globule and the acid-denatured forms, the near-UV CD spectrum is nearly abolished, although the authors report weak residual positive CD through the aromatic region. [Pg.245]

Stanton and Merz studied the reaction of carbon dioxide addition to zinc hydroxide, as a model for zinc metallo-enzyme human carbonic anhydrase IIJ 36. It was shown that the LDA calculations (DFT(SVWN)) were not reliable for locating transition state structures whereas the post-LDA ones (DFT(B88/P86)) led to the transition state structures and ener-... [Pg.104]

Warshel is to utilize a formula identical to (11.22) in this chapter to compute the free energy change. They employed an empirical valence bond (EVB, below) approach to approximately model electronic effects, and the calculations included the full experimental structure of carbonic anhydrase. An H/D isotope effect of 3.9 1.0 was obtained in the calculation, which compared favorably with the experimental value of 3.8. This benchmark calculation gives optimism that quantum effects on free energies can be realistically modeled for complex biochemical systems. [Pg.416]

This reaction is essential in maintaining a constant pH in blood by the bicarbonate buffer system. Carbonic anhydrase, which contains a single zinc atom in its structure, has a molecular weight of about 30,000. In this structure, zinc is surrounded tetrahedrally by three histidine molecules and one water molecule. The exact role of the catalyst is not known, but it is believed to involve hydrolysis that can be represented as... [Pg.804]

Kisker, C., Schindelin, H., Alber, B. E., Ferry, J. G., and Rees, D. C. (1996). A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 15, 2323-2330. [Pg.93]


See other pages where Carbonic anhydrase structure is mentioned: [Pg.718]    [Pg.518]    [Pg.170]    [Pg.183]    [Pg.61]    [Pg.347]    [Pg.379]    [Pg.402]    [Pg.103]    [Pg.355]    [Pg.356]    [Pg.361]    [Pg.363]    [Pg.366]    [Pg.369]    [Pg.369]    [Pg.911]    [Pg.53]    [Pg.423]    [Pg.71]    [Pg.1165]    [Pg.1165]    [Pg.1172]    [Pg.245]    [Pg.468]    [Pg.99]    [Pg.426]    [Pg.108]    [Pg.195]    [Pg.212]    [Pg.74]   
See also in sourсe #XX -- [ Pg.186 , Pg.194 , Pg.220 , Pg.240 , Pg.248 ]

See also in sourсe #XX -- [ Pg.600 ]

See also in sourсe #XX -- [ Pg.600 ]

See also in sourсe #XX -- [ Pg.49 , Pg.51 , Pg.75 ]

See also in sourсe #XX -- [ Pg.357 ]




SEARCH



Anhydrase

Carbon structure

Carbonate structure

Carbonic anhydrase

Carbonic anhydrase (— carbonate

Carbonic anhydrases

© 2024 chempedia.info