Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon sulfides water

The solubility of the carbonate in water containing carbon dioxide causes the formation of caves with stalagtites and stalagmites and is responsible for hardness in water. Other important compounds are the carbide, chloride, cyanamide, hypochlorite, nitrate, and sulfide. [Pg.48]

Carbon tetrachloride-hydrogen sulfide-water ternary system, 49, 51, 52 Carboniuin ion polymerization, 158 Carboxylic groups initiator, 174 Catalyst clathrates equilibrium, 35 Cell partition function, in calculation of thermodynamic quantities of clathrates, 26... [Pg.404]

Valentinite, see Antimony(III) oxide Verdigris, see Copper acetate hydrate Vermillion, see Mercury(II) sulfide Villiaumite, see Sodium fluoride Vitamin B3, see Calcium (+)pantothenate Washing soda, see Sodium carbonate 10-water Whitlockite, see Calcium phosphate Willemite, see Zinc silicate(4—)... [Pg.544]

The atmosphere of modern Earth is thought to be very different from that of early Earth. Scientists conjecture that Earth s first atmosphere consisted of carbon dioxide, water vapor, nitrogen, and hydrogen sulfide, with trace amounts of ammonia and methane. The gases in the atmosphere are thought to have been released from the interior of the planet by volcanic eruptions. At this early... [Pg.59]

HaS or HI, so as to form lead carbonate, sulfide or iodide oidy on the surface without penetration into the crystal (Ref 22). This treatment will unquestionably reduce the efficiency of LA because it will be contaminated by inert materials l)Solubiliry of LA in water or in 50% alcohol was detd as described in item VII F tinder Lead Azide Plant Analytical Procedures In addn to above listed tests, the various LA s were loaded in M47 caps as intermediate chges together with NOLNo 130 as a primary chge and RDX as a base chge and subjected to the following tests given in the Purchase Description PA-PD-202, with Rev 1 dated 30 Sept 1952 and Amend 1 dated 27 Jan 1953 ... [Pg.562]

The most common example of the first type is the dissolving of insoluble salts of weak acids by strong acids. Many hydroxides, carbonates, sulfides, phosphates, borates, oxalates, and salts of other weak acids may be dissolved by strong acids, even though their solubility in water is extremely low. In the following problems, we consider two common questions "How much precipitate will dissolve under certain conditions " and "What conditions are needed to totally dissolve a given amount of precipitate "... [Pg.380]

Mond nickel A process for extracting nickel from its ores by the intermediary of the volatile nickel tetracarbonyl. Sulfide ores are first roasted to convert sulfides to oxides, and then reduced by heating in hydrogen and carbon monoxide (water gas). The crude metal is caused to react with carbon monoxide at 50°C, producing Ni(CO)4, which is subsequently decomposed at 180 to 200°C. Invented by L. Mond and C. Langer in 1889, piloted at the works of Henry Wiggin Company in Smethwick, Scotland in 1892, and subsequently commercialized on a large scale in Swansea, South Wales, where it still operates (under the ownership of CVRD Inco). A new plant was built in Canada in 1986. [Pg.242]

Effect of pH on the solubility of acidic and basic substances. Solubility of calcium carbonate in water. Sulfide precipitation. Values of solubility products. [Pg.474]

Al T. A., Martin C. J., and Blowes D. W. (2000) Carbonate-mineral/water interactions in sulfide-rich mine taihngs. Geochim. Cosmochim. Acta 64, 3933-3948. [Pg.4736]

Figure 15.7. Stoichiometric correlations among nitrate, phosphate, oxygen, sulfide, and carbon. The correlations can be explained by the stoichiometry of reactions such as equation 3 concentrations are in micromolar, (a) Correlation between nitrate nitrogen and phosphate phosphoms corrected for salt error in waters of the western Atlantic, (b) Correlation between nitrate nitrogen and apparent oxygen utilization in same samples. The points falling off the line are for data from samples above 1000 m (Redfield, 1934, p. 177). (c) Correlation between nitrate nitrogen and carbonate carbon in waters of the western Atlantic, (d) Relation of sulfide sulfur and total carbonate carbon in waters of the Black Sea. Numbers indicate depth of samples. Slope of line corresponds to AS /AC = 0.36. (From data of Skopintsev et al., 1958, as quoted in Redfield et al., 1966.) (e) Correlation of the concentration of nitrogen to phosphate in the Atlantic Ocean (GEOSECS data). The slope through all the data yields an N/P ratio close to 16. Figure 15.7. Stoichiometric correlations among nitrate, phosphate, oxygen, sulfide, and carbon. The correlations can be explained by the stoichiometry of reactions such as equation 3 concentrations are in micromolar, (a) Correlation between nitrate nitrogen and phosphate phosphoms corrected for salt error in waters of the western Atlantic, (b) Correlation between nitrate nitrogen and apparent oxygen utilization in same samples. The points falling off the line are for data from samples above 1000 m (Redfield, 1934, p. 177). (c) Correlation between nitrate nitrogen and carbonate carbon in waters of the western Atlantic, (d) Relation of sulfide sulfur and total carbonate carbon in waters of the Black Sea. Numbers indicate depth of samples. Slope of line corresponds to AS /AC = 0.36. (From data of Skopintsev et al., 1958, as quoted in Redfield et al., 1966.) (e) Correlation of the concentration of nitrogen to phosphate in the Atlantic Ocean (GEOSECS data). The slope through all the data yields an N/P ratio close to 16.
Properties Fuming, colorless liquid penetrating odor. D 2.852 (15C), bp 175C fp -40C. Soluble in acetone, alcohol, carbon disulfide, hydrogen sulfide, water (decomposes). [Pg.987]

Surface chemistry of the oxide-water interface is emphasized here, not only because the oxides are of great importance at the mineral-water (including the clay-water) interface but also because its coordination chemistry is much better understood than that of other surfaces. Experimental studies on the surface interactions of carbonates, sulfides, disulfides, phosphates, and biological materials are only now emerging. The concepts of surface coordination chemistry can also be applied to these interfaces. This chapter is designed... [Pg.3]

Natural waters from all sources, including soils, lakes, streams, estuaries, and the ocean (see review of Stevenson, 1983) have been found to contain trace metals in organically bound forms. The micronutrient cations in displaced soil solutions have also been shown to occur partly in organically bound forms (Geering et al., 1969). Trace metals that would ordinarily convert to insoluble precipitates (as carbonates, sulfides, or hydroxides) at the pH values found in many soils, sediments, and natural waters are undoubt-... [Pg.37]

The metals have the tendency to form compounds of low solubility with the major divalent cations (Pb, Cd being found in natural water. Hydroxide, carbonate, sulfide, and, more rarely, sulfate may act as solubility controls in precipitating metal ions from water. A significant fraction of lead and, to a greater extent, cadmium carried by river water is expected to be in an undissolved form. This can consist of colloidal particles or larger undissolved particles of lead carbonate, lead oxide, lead hydroxide, or other lead compounds incorporated in other components of surface particulate matter from runoff. The ratio of lead in suspended solids to lead in dissolved form has been found to vary from 4 1 in rural streams to 27 1 in urban streams. The US Environmental Protection Agency (USEPA) has reported Maximum Contaminant Levels in water that are permissible to be 0.005 m L for cadmium and 0.015 mg/L of lead. ... [Pg.132]


See other pages where Carbon sulfides water is mentioned: [Pg.176]    [Pg.117]    [Pg.134]    [Pg.100]    [Pg.152]    [Pg.201]    [Pg.406]    [Pg.7]    [Pg.108]    [Pg.413]    [Pg.3]    [Pg.499]    [Pg.117]    [Pg.134]    [Pg.315]    [Pg.136]    [Pg.574]    [Pg.553]    [Pg.39]    [Pg.522]    [Pg.523]    [Pg.12]    [Pg.840]    [Pg.4840]    [Pg.522]    [Pg.523]    [Pg.758]    [Pg.856]    [Pg.277]    [Pg.39]    [Pg.1431]    [Pg.39]    [Pg.508]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.4 , Pg.6 ]




SEARCH



Carbon sulfides

Carbon sulfids

Carbonated waters

Water carbon)

Water sulfide

© 2024 chempedia.info