Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nucleophiles metal reactions

A wide range of transition metal-allyl complexes are known to react with many types of nucleophiles. In most cases, these reactions occur between cationic allyl complexes and amines or stabilized, anionic carbon nucleophiles. The reaction typically occurs between the nucleophile and the form of the allyl complex, and attack usually occurs at the face of the allyl ligand opposite the metal. However, there are exceptions to these trends. For example, several experiments suggest that unstabilized carbon nucleophiles react first at the metal center, and C-C bond formation occurs between the alkyl and the allyl group by reductive elimination. In addition, a recent study has shown through deuterium labeling that attack of malonate anion on a molybdenum-allyl complex occurs with retention of configuration. ... [Pg.436]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

When a Br nsted base functions catalytically by sharing an electron pair with a proton, it is acting as a general base catalyst, but when it shares the electron with an atom other than the proton it is (by definition) acting as a nucleophile. This other atom (electrophilic site) is usually carbon, but in organic chemistry it might also be, for example, phosphorus or silicon, whereas in inorganic chemistry it could be the central metal ion in a coordination complex. Here we consider nucleophilic reactions at unsaturated carbon, primarily at carbonyl carbon. Nucleophilic reactions of carboxylic acid derivatives have been well studied. These acyl transfer reactions can be represented by... [Pg.349]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

Acetylenes are sufficiently acidic to react with sodium metal to generate acetylides, useful nucleophiles in the formation of carbon-carbon bonds. The reaction is classically carried out in liquid ammonia, which is a good solvent for alkali metals but which is troublesome to handle. Two convenient modifications of the acetylide generation reaction overcome this difficulty and are discussed below along with the classical method. [Pg.121]

Addition of carbon nucleophiles to vinylepoxides is of particular importance, since a new carbon-carbon bond is formed. It is of considerable tactical value that conditions allowing for regiocontrolled opening of vinyloxiranes with this type of nucleophiles have been developed. Reactions that proceed through fonnation of a rr-allyl metal intermediate with subsequent external delivery of the nucleophile, or that make use of a soft carbon nucleophile, generally deliver the SN2 product. In contrast, the Sn2 variant is often the major reaction pathway when hard nucleophiles are employed. In some methods a nucleophile can be delivered selectively at either the Sn2 or SN2 positions by changing the reaction conditions. [Pg.335]

We see from these examples that many of the carbon nucleophiles we encountered in Chapter 10 are also nucleophiles toward aldehydes and ketones (cf. Reactions 10-104-10-108 and 10-110). As we saw in Chapter 10, the initial products in many of these cases can be converted by relatively simple procedures (hydrolysis, reduction, decarboxylation, etc.) to various other products. In the reaction with terminal acetylenes, sodium acetylides are the most common reagents (when they are used, the reaction is often called the Nef reaction), but lithium, magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide-ethylenediamine complex, a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of a base, so that the acetylide is generated in situ. This procedure is called the Favorskii reaction, not to be confused with the Favorskii rearrangement (18-7). ... [Pg.1225]

Bidentate NHC-Pd complexes have been tested as hydrogenation catalysts of cyclooctene under mild conditions (room temperature, 1 atm, ethanol). The complex 22 (Fig. 2.5), featuring abnormal carbene binding from the O carbon of the imidazole heterocycles, has stronger Pd-C jj, bonds and more nucleophilic metal centre than the bound normal carbene chelate 21. The different ligand properties are reflected in the superior activity of 22 in the hydrogenation of cyclooctene at 1-2 mol% loadings under mild conditions. The exact reasons for the reactivity difference in terms of elementary reaction steps are not clearly understood [19]. [Pg.27]

Reaction conditions that involve other enolate derivatives as nucleophiles have been developed, including boron enolates and enolates with titanium, tin, or zirconium as the metal. These systems are discussed in detail in the sections that follow, and in Section 2.1.2.5, we discuss reactions that involve covalent enolate equivalents, particularly silyl enol ethers. Scheme 2.1 illustrates some of the procedures that have been developed. A variety of carbon nucleophiles are represented in Scheme 2.1, including lithium and boron enolates, as well as titanium and tin derivatives, but in... [Pg.65]

Monoanions derived from nitroalkanes are more prone to alkylate on oxygen rather than on carbon in reactions with alkyl halides, as discussed in Section 5.1. Methods to circumvent O-alkylation of nitro compounds are presented in Sections 5.1 and 5.4, in which alkylation of the a.a-dianions of primary nitro compounds and radial reactions are described. Palladium-catalyzed alkylation of nitro compounds offers another useful method for C-alkylation of nitro compounds. Tsuj i and Trost have developed the carbon-carbon bond forming reactions using 7t-allyl Pd complexes. Various nucleophiles such as the anions derived from diethyl malonate or ethyl acetoacetate are employed for this transformation, as shown in Scheme 5.7. This process is now one of the most important tools for synthesis of complex compounds.6811-1 Nitro compounds can participate in palladium-catalyzed alkylation, both as alkylating agents (see Section 7.1.2) and nucleophiles. This section summarizes the C-alkylation of nitro compounds using transition metals. [Pg.138]

In the dihapto mode the pyridine ring can be protonated intermolecularly at nitrogen, or even intramolecularly deprotonated at carbon. The first evidence for metal C—N insertion is the reaction of the metallaaziridine complex (111) with homogeneity LiHBEt3 in THF at low temperature that yields (112) (Scheme 49).251-254 Experiments with carbon nucleophiles (RMgCl, MeLi) in place of LiHBEt3 have provided valuable information to allow discrimination between... [Pg.107]

Alternatively, the transmetalation can be facilitated by increasing the nucleophilicity of the carbon nucleophile participating in the cross-coupling, which is most often done by increasing the electron density on the metal by coordination of extra anionic ligands. Two distinct approaches to nucleophilic activation are (i) the addition of appropriate Lewis bases to the reaction mixture (nucleophilic catalysis) or (ii) the use of a preformed, electron-rich, organo-metallic reagent with enhanced nucleophilicity. [Pg.327]

Sn2 and SNAr Reactions In these reactions the metal atom attacks aliphatic or aromatic carbon bonded to X, respectively. A stronger nucleophilic metal as well as a better leaving group X (I>Br>Cl>F) facilitates, whereas steric hindrance in R slows these types of oxidative addition [193, 194]. SNAr reactions are favored by electron-withdrawing substituents Y in the case of the substrates 4-YQH4X [2], Sn2 [27, 29, 89, 117, 180, 181] and SNAr [31, 33, 62-67, 95, 100, 107-109] mechanisms have been suggested frequently for zerovalent d10 complexes such as [L M] (M = Ni, Pd, Pt L=tertiary phosphine =2,3,4). For example ... [Pg.535]

Zerovalent transition metal carbonyl moieties may act as electron acceptors, and thus activate coordinated polyene ligands toward nucleophilic attack. Reaction of (C.411<5 )-Fe(CO)3 with KBHEt3 (—80 °C) proceeds via attack at a coordinated carbon monoxide to generate the anionic iron-formyl species 185 (Scheme 47)184. Upon warming to... [Pg.950]

The nucleophilic attack by alkoxides, amines, and water is of great interest to homogeneous catalysis. A dominant reaction in syn-gas systems is the conversion of carbonyls with water to metal hydrides and carbon dioxide ("Shift Reaction"), see Figure 2.27. [Pg.46]

All these observations point to the occurrence of a 8 2 rather than an outer sphere, dissociative electron-transfer mechanism in cases where steric constraints at the carbon or metal reacting centres are not too severe. It is, however, worth examining two other mechanistic possibilities. One of these is an electrocatalytic process of the Sg -type that would involve the following reaction sequence. If, in the reaction of the electron donor (nucleophile), the bonded interactions in the transition state are vanishingly small, the alkyl radical is formed together with the oxidized form of the electron donor, D . Cage coupling (144) may then occur, if their mutual affinity is... [Pg.103]

Also alkynylcarbene complexes can react as Michael acceptors with nucleophiles, forming 1,3-dien-l-ylcarbene complexes (Figure 2.17). Both carbon nucleophiles, such as, e.g., enamines [246-249], and non-carbon nucleophiles, such as imidates [250], amines [64,131,251], aliphatic alcohols [48,79,252], phenols [252], and thiols [252] can add to the C-C triple bond of alkynylcarbene complexes. Further reactions of the C-C triple bond of alkynylcarbene complexes include 1,3-dipolar [253,254], Diels-Alder [64,234,238,255-258] and [2 -i- 2] cycloadditions [259 -261], intramolecular Pauson-Khand reactions [43,262], and C-metallation of ethynylcarbene complexes [263]. [Pg.36]

In general, carbonylation proceeds via activation of a C-H or a C-X bond in the olefins and halides or alcohols, respectively, followed by CO-insertion into the metal-carbon bond. In order to form the final product there is a need for a nucleophile, Nu". Reaction of an R-X compound leads to production of equivalent amounts of X", the accumulation of which can be a serious problem in case of halides. In many cases the catalyst is based on palladium but cobalt, nickel, rhodium and mthenium complexes are also widely used. [Pg.147]

The polarity of carbon-halogen bond of alkyl halides is responsible for their nucleophilic substitution, elimination and their reaction with metal atoms to form organometallic compounds. Nucleophilic substitution reactions are categorised into and on the basis of their kinetic properties. Chirality has a profound role in understanding the reaction mechanisms of Sj l and Sj 2 reactions. Sj 2 reactions of chiral all l halides are characterised by the inversion of configuration while Sj l reactions are characterised by racemisation. [Pg.41]

Silicon-based Lewis acids have been known for some time, and the related chemistry in catalysis has recently been reviewed [24]. Most examples in the literature are mainly based on achiral species and will be discussed only briefly in this section. In general, a broad variety of reactions can be catalyzed with compounds like MejSiOTf, MejSiNTf or MOjSiClO. One advantage over some metal Lewis acids is that they are compatible with many carbon nucleophiles like silyl enol ethers, allyl organometallic reagents and cuprates. [Pg.351]

Due to their high electrophihcity, isocyanates are useful starting materials for the synthesis of heterocycles and C-C bond formation using carbon nucleophiles. A key feature of these reactions is the requirement for more than one equivalent of base. Additionally, a few examples of transition metal-catalyzed homologation of the central carbon of the heterocumulene moiety have been reported. [Pg.115]


See other pages where Carbon nucleophiles metal reactions is mentioned: [Pg.345]    [Pg.391]    [Pg.224]    [Pg.285]    [Pg.227]    [Pg.243]    [Pg.715]    [Pg.68]    [Pg.421]    [Pg.7]    [Pg.95]    [Pg.619]    [Pg.468]    [Pg.180]    [Pg.658]    [Pg.955]    [Pg.67]    [Pg.94]    [Pg.82]    [Pg.941]    [Pg.202]    [Pg.970]    [Pg.173]    [Pg.224]    [Pg.78]    [Pg.875]    [Pg.569]   


SEARCH



Carbon nucleophile

Carbon nucleophiles

Metal nucleophiles

Metal—carbon triple bonds nucleophiles, reactions with

Nucleophiles metallated

Reagents metal/carbon nucleophile reactions

© 2024 chempedia.info