Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon Nanotubes CNT

Carbon nanotubes (CNTs) as well as fullerenes are splendid gift brought to the Earth from the red giant carbon stars in the long-distant universe through the spectroscopy. Moreover, those belong to new carbon allotropes of the mesoscopic scale with well-defined structures. In particular, CNTs are considered to be the materials appropriate to realise intriguing characteristics related to the mesoscopic system based on their size and physicochemical properties. [Pg.1]

Several structural characterisations of carbon nanotubes (CNTs) with the cylindrical graphite are reviewed from the viewpoint of transmission electron microscopy (TEM). Especially, electron energy loss spectroscopy (EELS) by using an energy-fdtered TEM is applied to reveal the dependence of fine structure of EELS on the diameter and the anisotropic features of CNTs. [Pg.29]

Studies on the electronic structure of carbon nanotube (CNT) is of much importance toward its efficient utilisation in electronic devices. It is well known that the early prediction of its peculiar electronic structure [1-3] right after the lijima s observation of multi-walled CNT (MWCNT) [4] seems to have actually triggered the subsequent and explosive series of experimental researches of CNT. In that prediction, alternative appearance of metallic and semiconductive nature in CNT depending on the combination of diameter and pitch or, more specifically, chiral vector of CNT expressed by two kinds of non-negative integers (a, b) as described later (see Fig. 1). [Pg.40]

Since the discovery of carbon nanotubes (CNTs) in 1991 [I], the band structures for CNTs have been calculated by a number of authors [2-7], They have predicted that CNTs can be metallic, narrow- or broad band-gap semiconductors. After macroscopic quantities of CNTs were synthesized [8], it has become possible to explore their practical properties. [Pg.76]

The synthesis of molecular carbon structures in the form of C q and other fullerenes stimulated an intense interest in mesoscopic carbon structures. In this respect, the discovery of carbon nanotubes (CNTs) [1] in the deposit of an arc discharge was a major break through. In the early days, many theoretical efforts have focused on the electronic properties of these novel quasi-one-dimensional structures [2-5]. Like graphite, these mesoscopic systems are essentially sp2 bonded. However, the curvature and the cylindrical symmetry cause important modifications compared with planar graphite. [Pg.89]

Hollow carbon nanotubes (CNTs) can be used to generate nearly onedimensional nanostrutures by filling the inner cavity with selected materials. Capillarity forces can be used to introduce liquids into the nanometric systems. Here, we describe experimental studies of capillarity filling in CNTs using metal salts and oxides. The filling process involves, first a CNT-opening steps by oxidation secondly the tubes are immersed into different molten substance. The capillarity-introduced materials are subsequently transformed into metals or oxides by a thermal treatment. In particular, we have observed a size dependence of capillarity forces in CNTs. The described experiments show the present capacities and potentialities of filled CNTs for fabrication of novel nanostructured materials. [Pg.128]

FIGURE 4.6 Variation of storage modulus against temperature for ethylene-vinyl acetate (EVA) nanocomposites having different loadings of carbon nanotube (CNT) and ANT. (From George, J.J., Sengupta, R., and Bhowmick, A.K., J. Nanosci. Nanotechnol., 8, 1, 2007. Courtesy of American Scientific Publishers.)... [Pg.93]

FIGURE 28.20 Curves of tan S vs temperature for rubber and carbon nanotubes (CNTs)/rubber nanocomposite. (From Lopez-Manebado, M.A. et al., J. Appl. Polym. Sci., 92, 3394, 2004.)... [Pg.792]

Carbon nanotubes (CNTs) are a set of materials with different structures and properties. They are among the most important materials of modern nanoscience and nanotechnology field. They combine inorganic, organic, bio-organic, coUoidal, and polymeric chemistry and are chemically inert. They are insoluble in any solvent and their chemistry is in a key position toward interdisciphnary applications, for example, use as supports for catalysts and catalytic membranes [20, 21]. [Pg.147]

Since the discovery of SWNTs, they have been expected to become the building blocks of the next generation of functional nanomaterials. However, their strong cohesive property and poor solubility have restricted the use of SWNTs for fundamental and applied research fields. One method to overcome these problems is to make the SWNTs more soluble by wrapping them with polymers [31]. At the same time, the fabrication of high-performance carbon nanotube (CNT)-based composites is driven by the ability to create anisotropy at the molecular level to obtain appropriate functions. [Pg.260]

An alternative route to obtain NbS2-sheathed carbon nanotubes (CNT) has been proposed by Zhu et al. [71] with this sonochemical method. In this study, CNTs act as templates to produce the uniform and well-crystallized bS2 nanotubes and the formation of such nanotubes has been explained by means of multi-point nuclei site growth mechanism. [Pg.207]

Mueler et al. and Gottschalk et al. [43, 44] presented a model for predicting concentrations of nanoparticles including nano-Ag, nano-Ti02, nano-ZnO, fullerenes, and carbon nanotubes (CNT) in different environmental compartments. The results of this study demonstrated that modeling is a meaningful utility to carry out quantitative risk assessment of nanoparticles. [Pg.37]

A new approach to improve the performance of solar devices using natural pigments is to employ carbon nanotube (CNT)-based counter-electrodes. As previously reported, the excited dye transfers an electron to Ti02 and so it acquires a positive charge. Then, the cationic molecule subtracts an electron from the counterelectrode which is transported by the electrolyte. This reaction is usually catalyzed by means of conductive and electrocatalytically active species for triiodide reduction of carbon coatings. CNTs have a high superficial area, which represents a very... [Pg.256]

The high purity carbon nanotubes (CNTs) used in this study were obtained by decomposition of acetylene over a powdered CoxMgi xO solid solution catalyst [19]. Different proportions of CNTs from 15 to 70% and polyacrylonitrile (PAN, Aldrich) have been mixed in an excess of acetone to obtain a slurry. After evaporation of acetone, precursor electrodes were formed by pressing the CNTs/PAN mixture at 1-2 tons/cm2. The C/C composites were formed by carbonisation of the pellets at 700-900°C for 30-420 min under nitrogen flow [20], The optimal capacitance properties of the composite were obtained for a mixture CNTs/PAN (30/70 wt%) treated at 700°C. Such C/C composite remains still quite rich in nitrogen (9 at% of N) demonstrating that PAN is an efficient nitrogen carrier. On the other hand,... [Pg.33]

Electronically conducting polymers (ECPs) such as polyaniline (PANI), polypyrrole (PPy) and po 1 y(3.4-cthy 1 cncdi oxyth iophcnc) (PEDOT) have been applied in supercapacitors, due to their excellent electrochemical properties and lower cost than other ECPs. We demonstrated that multi-walled carbon nanotubes (CNTs) prepared by catalytic decomposition of acetylene in a solid solution are very effective conductivity additives in composite materials based on ECPs. In this paper, we show that a successful application of ECPs in supercapacitor technologies could be possible only in an asymmetric configuration, i.e. with electrodes of different nature. [Pg.64]


See other pages where Carbon Nanotubes CNT is mentioned: [Pg.2]    [Pg.29]    [Pg.51]    [Pg.51]    [Pg.63]    [Pg.107]    [Pg.129]    [Pg.153]    [Pg.164]    [Pg.199]    [Pg.90]    [Pg.362]    [Pg.375]    [Pg.791]    [Pg.121]    [Pg.749]    [Pg.121]    [Pg.38]    [Pg.175]    [Pg.40]    [Pg.56]    [Pg.57]    [Pg.65]    [Pg.3]   
See also in sourсe #XX -- [ Pg.275 , Pg.276 , Pg.279 , Pg.281 , Pg.283 , Pg.284 ]




SEARCH



Carbon Nanotube (CNT)-Based Catalysts

Carbon Nanotubes (CNT) As New Substances

Carbon nanotube , CNTs

Carbon nanotube , CNTs

Carbon nanotube Aligned CNTs

Carbon nanotube CNTs-electrochemical biosensors

Carbon nanotube metallic CNTs

Carbon nanotube semiconducting CNTs

Carbon nanotubes -based electrochemical of CNT composites

Carbon nanotubes -based electrochemical of modified CNTs

Carbon nanotubes -based electrochemical of self-assembled CNTs

Carbon nanotubes CNT composites

Carbon nanotubes functionalizing polymer coated CNTs

Functionalized carbon nanotubes CNTs)

Membranes Filled with Carbon Nanotubes (CNTs)

Nanotubes CNTs)

Single-walled CNTs carbon nanotubes

© 2024 chempedia.info