Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide presence

Lower activity exhibited by Cu-Cr catalysts can also be attributed to its low surface area and pore volume than those of Cu-based catalysts. In Cu catalysts, CuO and CUAI2O4 are the possible phases which are expected to provide more effective active sites for the oxidation of carbon monoxide. Presence of CuCr204 was reported on Cu-Cr catalysts which were found to be less active if the copper concentration on alumina support was less than 12% by weight.(11). A part of Cr may partly stay on the surface as either Cr species or small crystallites of Cr203(12) on Cu-Cr catalysts and may block the active copper sites. Furthermore, lower activity can also be due to lower surface area and pore volume of the chromium incorporated catalysts. [Pg.826]

CO. Alkynes will react with carbon monoxide in the presence of a metal carbonyl (e.g. Ni(CO)4) and water to give prop>enoic acids (R-CH = CH-C02H), with alcohols (R OH) to give propenoic esters, RCH CHC02R and with amines (R NH2) to give propenoic amides RCHrCHCONHR. Using alternative catalysts, e.g. Fe(CO)5, alkynes and carbon monoxide will produce cyclopentadienones or hydroquinols. A commercially important variation of this reaction is hydroformyiation (the 0x0 reaction ). [Pg.82]

The material to be analyzed is pyrolyzed in an inert gas at 1100°C in the presence of carbon the carbon monoxide formed, if any, is either analyzed directly by chromatography or analyzed as carbon dioxide after oxidation by CuO. The CO2 is detected by infra-red spectrometry or by gas phase chromatography. [Pg.30]

Outside of carbon monoxide for which the toxicity is already well-known, five types of organic chemical compounds capable of being emitted by vehicles will be the focus of our particular attention these are benzene, 1-3 butadiene, formaldehyde, acetaldehyde and polynuclear aromatic hydrocarbons, PNA, taken as a whole. Among the latter, two, like benzo [a] pyrene, are viewed as carcinogens. Benzene is considered here not as a motor fuel component emitted by evaporation, but because of its presence in exhaust gas (see Figure 5.25). [Pg.260]

Carbon monoxide forms addition compounds. With chlorine in sunlight or in the presence of charcoal in the dark, carbonyl chloride... [Pg.179]

The solid readily dissolves chemically in concentrated hydrochloric acid, forming a complex, and in ammonia as the colourless, linear, complex cation [H3N -> Cu <- NHj] (cf AgCl) if air is absent (in the presence of air, this is oxidis to a blue ammino-copper(II) complex). This solution of ammoniacal copper(I) chloride is a good solvent or carbon monoxide, forming an addition compound CuCl. CO. H2O, and as such is used in gas analysis. On passing ethyne through the ammoniacal solution, a red-brown precipitate of hydrated copper(I) dicarbide (explosive when dry) is obtained ... [Pg.415]

Boil 1 ml. of formamide in a test-tube and note that ammonia is freely evolved. Carbon monoxide is also produced, but cannot usually be ignited in the presence of the ammonia. [Pg.362]

By passing a mixture of carbon monoxide and hydrogen chloride into the aromatic hydrocarbon in the presence of a mixture of cuprous chloride and aluminium chloride which acts as a catalyst (Gattermann - Koch reaction). The mixture of gases probably reacts as the equivalent of the unisolated acid chloride of formic acid (formyl chloride) ... [Pg.689]

Patents on the catbonylation of methyl chlotide [74-87-3] using carbon monoxide [630-08-0] in the presence of rhodium, palladium, and tidium complexes, iodo compounds, and phosphonium iodides or phosphine oxides have been obtained (26). In one example the reaction was conducted for 35... [Pg.81]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

The reaction is initiated with nickel carbonyl. The feeds are adjusted to give the bulk of the carbonyl from carbon monoxide. The reaction takes place continuously in an agitated reactor with a Hquid recirculation loop. The reaction is mn at about atmospheric pressure and at about 40°C with an acetylene carbon monoxide mole ratio of 1.1 1 in the presence of 20% excess alcohol. The reactor effluent is washed with nickel chloride brine to remove excess alcohol and nickel salts and the brine—alcohol mixture is stripped to recover alcohol for recycle. The stripped brine is again used as extractant, but with a bleed stream returned to the nickel carbonyl conversion unit. The neutralized cmde monomer is purified by a series of continuous, low pressure distillations. [Pg.155]

Process Technology. In a typical oxo process, primary alcohols are produced from monoolefins in two steps. In the first stage, the olefin, hydrogen, and carbon monoxide [630-08-0] react in the presence of a cobalt or rhodium catalyst to form aldehydes, which are hydrogenated in the second step to the alcohols. [Pg.457]

Formamide decomposes thermally either to ammonia and carbon monoxide or to hydrocyanic acid and water. Temperatures around 100°C are critical for formamide, in order to maintain the quaUty requited. The lowest temperature range at which appreciable decomposition occurs is 180—190°C. Boiling formamide decomposes at atmospheric pressure at a rate of about 0.5%/min. In the absence of catalysts the reaction forming NH and CO predominates, whereas hydrocyanic acid formation is favored in the presence of suitable catalysts, eg, aluminum oxides, with yields in excess of 90% at temperatures between 400 and 600°C. [Pg.508]

Early in the twentieth century, the first attempts to manufacture formamide directiy from ammonia and carbon monoxide under high temperature and pressure encountered difficult technical problems and low yields (23). Only the introduction of alkaU alkoxides in alcohoHc solution, ie, the presence of alcoholate as a catalyst, led to the development of satisfactory large-scale formamide processes (24). [Pg.508]

In the presence of aluminum chloride and a small amount of cuprous haUde, a mixture of hydrogen chloride and carbon monoxide serves as a formyl a ting agent of aromatics (Gattermann-Koch reaction) (107) ... [Pg.559]

Olefins are carbonylated in concentrated sulfuric acid at moderate temperatures (0—40°C) and low pressures with formic acid, which serves as the source of carbon monoxide (Koch-Haaf reaction) (187). Liquid hydrogen fluoride, preferably in the presence of boron trifluoride, is an equally good catalyst and solvent system (see Carboxylic acids). [Pg.563]

Lactones are piepaied from formaldehyde and carbon monoxide by cyclocondensation with propylene glycol in the presence of a strong acid and a Cu(l) or Ag carbonyl catalyst (20). [Pg.366]

Other Methods. A variety of other methods have been studied, including phenol hydroxylation by N2O with HZSM-5 as catalyst (69), selective access to resorcinol from 5-methyloxohexanoate in the presence of Pd/C (70), cyclotrimerization of carbon monoxide and ethylene to form hydroquinone in the presence of rhodium catalysts (71), the electrochemical oxidation of benzene to hydroquinone and -benzoquinone (72), the air oxidation of phenol to catechol in the presence of a stoichiometric CuCl and Cu(0) catalyst (73), and the isomerization of dihydroxybenzenes on HZSM-5 catalysts (74). [Pg.489]

Similarly, nitroben2ene, carbon monoxide, and methanol can react sequentially in the presence of noble metal catalysts, to produce methyl A/-phenylcarbamate [2603-10-3] (4). The phenylcarbamate is subsequently coupled with formaldehyde [50-00-0] to yield the methylenebis(carbamate) (5) which is pyroly2ed to yield methylene diphenyl diisocyanate (MDI) (23). [Pg.448]

Nickel Carbonyl The extremely toxic gas nickel carbonyl can be detected at 0.01 ppb by measuring its chemiluminescent reaction with ozone in the presence of carbon monoxide. The reaction produces excited nickel(II) oxide by a chain process which generates many photons from each pollutant molecule to permit high sensitivity (315). [Pg.276]

Hydroformylation. Esters of maleate and fumarate are treated with carbon monoxide and hydrogen in the presence of appropriate catalysts to give formyl derivatives. Dimethyl fumarate [624-49-7] is hydroformylated in 1 1 CO/H2 at 100°C and 11.6 MPa pressure with a cobalt [7440-48-4] catalyst to give an 83% yield of dimethyl formylsuccinate [58026-12-3] product (72). [Pg.452]

Carbon Monoxide Process. This process involves the insertion of carbon monoxide [630-08-0] into a chloroacetate. According to the hterature (34) in the first step ethyl chloroacetate [105-39-5] reacts with carbon monoxide in ethanol [64-17-5] in the presence of dicobalt octacarbonyl [15226-74-1], Co2(CO)g, at typical temperature of 100°C under a pressure of 1800 kPa (18 bars) and at pH 5.7. Upon completion of the reaction the sodium chloride formed is separated along with the catalyst. The ethanol, as well as the low boiling point components, is distilled and the nonconverted ethyl chloroacetate recovered through distillation in a further column. The cmde diethyl malonate obtained is further purified by redistillation. This process also apphes for dimethyl malonate and diisopropyl malonate. [Pg.467]

Other processes described in the Hterature for the production of malonates but which have not gained industrial importance are the reaction of ketene [463-51-4] with carbon monoxide in the presence of alkyl nitrite and a palladium salt as a catalyst (35) and the reaction of dichioromethane [75-09-2] with carbon monoxide in the presence of an alcohol, dicobalt octacarbonyl, and an imida2ole (36). [Pg.467]

Although not commercialized, both Elf Atochem and Rn hm GmbH have pubUshed on development of hydrogen fluoride-catalyzed processes. Norsolor, since acquired by Elf Aquitaine, had been granted an exclusive European Hcense for the propylene-hydrogen fluoride technology of Ashland Oil (99). Rn hm has patented a process for the production of isobutyric acid in 98% yield via the isomerization of isopropyl formate in the presence of carbon monoxide and hydrofluoric acid (100). [Pg.252]

In the carbonyl process, the Hquid is purified, vaporized, and rapidly heated to ca 300°C which results in the decomposition of the vapor to carbon monoxide and a fine high purity nickel powder of particle sizes <10 fim. This product is useflil for powder metallurgical appHcations (see Metallurgy, powder). Nickel carbonyl can also be decomposed in the presence of nickel powder, upon which the nickel is deposited. This process yields nickel pellets, typically about 0.8 cm dia and of >99.9 wt% purity. [Pg.3]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

On rapid heating, oxaUc acid decomposes to formic acid, carbon monoxide, carbon dioxide, and water (qv). When it is heated ia 96 wt % glycerol solution at 88—121°C, the presence of formic acid ia the decomposed product tends to accelerate the decomposition reaction. Formic acid is thus... [Pg.456]


See other pages where Carbon monoxide presence is mentioned: [Pg.191]    [Pg.191]    [Pg.259]    [Pg.293]    [Pg.47]    [Pg.81]    [Pg.472]    [Pg.508]    [Pg.508]    [Pg.577]    [Pg.26]    [Pg.63]    [Pg.317]    [Pg.454]    [Pg.516]    [Pg.344]    [Pg.455]    [Pg.504]    [Pg.511]    [Pg.252]    [Pg.474]    [Pg.504]    [Pg.74]    [Pg.103]    [Pg.465]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Carbon monoxide hydrosilylation in the presence

© 2024 chempedia.info