Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide aluminum

Formamide decomposes thermally either to ammonia and carbon monoxide or to hydrocyanic acid and water. Temperatures around 100°C are critical for formamide, in order to maintain the quaUty requited. The lowest temperature range at which appreciable decomposition occurs is 180—190°C. Boiling formamide decomposes at atmospheric pressure at a rate of about 0.5%/min. In the absence of catalysts the reaction forming NH and CO predominates, whereas hydrocyanic acid formation is favored in the presence of suitable catalysts, eg, aluminum oxides, with yields in excess of 90% at temperatures between 400 and 600°C. [Pg.508]

In the presence of aluminum chloride and a small amount of cuprous haUde, a mixture of hydrogen chloride and carbon monoxide serves as a formyl a ting agent of aromatics (Gattermann-Koch reaction) (107) ... [Pg.559]

Molten anhydrous magnesium chloride is tapped from the bottom of the reactor. Iron, aluminum, and siUcon-based impurities are also converted to their chlorides, which volatili2e out of the reactor. Carbon monoxide is generated from coke, carbon dioxide, and oxygen. The magnesium chloride is sent to electrolytic cells. Russian diaphragmless cells purchased from the defunct American Magnesium Co. are used. [Pg.319]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

According to Faraday s law, one Faraday (26.80 Ah) should deposit one gram equivalent (8.994 g) of aluminum. In practice only 85—95% of this amount is obtained. Loss of Faraday efficiency is caused mainly by reduced species ( Al, Na, or A1F) dissolving or dispersing in the electrolyte (bath) at the cathode and being transported toward the anode where these species are reoxidized by carbon dioxide forming carbon monoxide and metal oxide, which then dissolves in the electrolyte. Certain bath additives, particularly aluminum fluoride, lower the content of reduced species in the electrolyte and thereby improve current efficiency. [Pg.97]

Quaternary Salts. Herbicides paraquat (20) and diquat (59) are the quaternary salts of 4,4 -bipyridine (19) and 2,2 -bipyridine with methyl chloride and 1,2-dibromoethane, respectively. Higher alkylpyridinium salts are used in the textile industry as dye ancillaries and spin bath additives. The higher alkylpyridinium salt, hexadecylpytidinium chloride [123-03-5] (67) (cetylpyridinium chloride) is a topical antiseptic. Amprolium (62), a quaternary salt of a-picohne (2), is a coccidiostat. Bisaryl salts of butylpyridinium bromide (or its lower 1-alkyl homologues) with aluminum chloride have been used as battery electrolytes (84), in aluminum electroplating baths (85), as Friedel-Crafts catalysts (86), and for the formylation of toluene by carbon monoxide (87) (see QuaternaryAA ONiUM compounds). [Pg.336]

An interesting development in the use of metal carbonyl catalysts is the production of hydrocarbons from carbon monoxide and hydrogen. The reaction of carbon monoxide and hydrogen in a molten solution of sodium chloride and aluminum chloride with It4(CO) 2 a catalyst yields a mixture of hydrocarbons. Ethane is the primary product (184). [Pg.71]

When heated for eight hours at 200°C and 91.2 MPa (900 atm) in the presence of aluminum, methylene chloride reacts with carbon monoxide to yield chloroacetyl chloride, CH2CICOCI (10). [Pg.519]

Mesitaldehyde may be prepared from mesitylmagnesium bromide by the reaction with orthoformate esters3 or ethoxy-methyleneaniline 3 from acetylmesitylene by oxidation with potassium permanganate,4 from mesitoyl chloride by reduction,5 from mesityllithium by the reaction with iron pentacarbonyl and from mesitylene by treatment with formyl fluoride and boron trifluoride,7 by treatment with carbon monoxide, hydrogen chloride, and aluminum chloride,8 or by various applications of the Gatterman synthesis.9-11... [Pg.2]

By quenching the polymerization with C1402 or Cl40 the determination of the number of propagation rate constants was found to be also possible for the two-component catalytic system TiCl2 + AlEt2Cl 158, 159). In contrast to alcohols, carbon dioxide and carbon monoxide under polymerization conditions react only with titanium-carbon active bonds and do not react with inactive aluminum-polymer bonds. [Pg.199]

For similar samples on alumina, these effects are not observed, as Indicated In Table I. Mo migration of aluminum or oxygen species Is observed In AES, and the capacity of the film to adsorb carbon monoxide Is not altered by changing the annealing temperature from 525 to 760 K. [Pg.86]

In related studies, Cp2ZrCl2 has been found to catalyze at room temperature an aluminum hydride (i-Bu2AlH) reduction of CO to linear Ci-C5 alcohols (430). The system involves reaction of complex 55 with CO, which precipitates the starting zirconium(IV) complex and leaves a yellow solution, that on hydrolysis yields the alcohols. Toluene solutions of Cp2Ti(CO)2 complex under H2/CO effect Eq.(69), i.e., a homogeneous stoichiometric hydrogenation of carbon monoxide to methane (426). [Pg.374]

Iceland may start with methanol powered PEM vehicles and vessels. The University of Iceland is involved in research on the production of methanol (CH3OH) from hydrogen combined with carbon monoxide (CO) or C02 from the exhaust of aluminum and ferrosilicon smelters. This would capture hundreds of thousands of tons of CO and C02 released from these smelters. If this is combined with hydrogen generated from electrolysis using renewable power, Iceland could cut its greenhouse gas emissions in half. [Pg.275]

Formylation of arenes using carbon monoxide and hydrogen chloride in the presence of aluminum chloride under high pressure. [Pg.259]


See other pages where Carbon monoxide aluminum is mentioned: [Pg.76]    [Pg.5]    [Pg.308]    [Pg.508]    [Pg.433]    [Pg.504]    [Pg.175]    [Pg.74]    [Pg.375]    [Pg.99]    [Pg.100]    [Pg.147]    [Pg.220]    [Pg.287]    [Pg.514]    [Pg.441]    [Pg.137]    [Pg.313]    [Pg.150]    [Pg.713]    [Pg.767]    [Pg.48]    [Pg.77]    [Pg.80]    [Pg.244]    [Pg.73]    [Pg.26]    [Pg.450]    [Pg.34]    [Pg.281]    [Pg.349]    [Pg.66]    [Pg.48]    [Pg.159]    [Pg.279]    [Pg.181]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Aluminum carbonate

Carbon monoxide with aluminum derivatives

© 2024 chempedia.info