Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon diameter

Adsorbents such as some silica gels and types of carbons and zeolites have pores of the order of molecular dimensions, that is, from several up to 10-15 A in diameter. Adsorption in such pores is not readily treated as a capillary condensation phenomenon—in fact, there is typically no hysteresis loop. What happens physically is that as multilayer adsorption develops, the pore becomes filled by a meeting of the adsorbed films from opposing walls. Pores showing this type of adsorption behavior have come to be called micropores—a conventional definition is that micropore diameters are of width not exceeding 20 A (larger pores are called mesopores), see Ref. 221a. [Pg.669]

The furnace. For heating the tube packing, a small electric furnace E is used, similar to that described in the carbon and hydrogen determination. It is 22 cm. in length and 1 5 cm. in diameter. The furnace is maintained at 680 C., as before, by a calibrated Simmerstat and its temperature is checked from time to time with a bimetal pyrometer. [Pg.484]

Mix 100 g. of ammonium chloride and 266 g. of paraformaldehyde in a 1-litre rovmd-bottomed flask fitted with a long reflux condenser containing a wide inner tube (ca. 2 cm. diameter) the last-named is to avoid clogging the condenser by paraformaldehyde which may sublime. Immerse the flask in an oil bath and gradually raise the temperature. The mixture at the bottom of the flask liquefies between 85° and 105° and a vigorous evolution of carbon dioxide commences at once remove the burner beneath the oil bath and if the reaction becomes too violent remove... [Pg.416]

Fig. 8. Variation of activation energy with kinetic molecular diameter for diffusion in 4A 2eohte (A), 5A 2eohte (0)> carbon molecular sieve (MSC-5A) (A). Kinetic diameters are estimated from the van der Waals co-volumes. From ref. 7. To convert kj to kcal divide by 4.184. Fig. 8. Variation of activation energy with kinetic molecular diameter for diffusion in 4A 2eohte (A), 5A 2eohte (0)> carbon molecular sieve (MSC-5A) (A). Kinetic diameters are estimated from the van der Waals co-volumes. From ref. 7. To convert kj to kcal divide by 4.184.
Typical pore size distributions for these adsorbents have been given (see Adsorption). Only molecular sieve carbons and crystalline molecular sieves have large pore volumes in pores smaller than 1 nm. Only the crystalline molecular sieves have monodisperse pore diameters because of the regularity of their crystalline stmctures (41). [Pg.275]

Electrodes. Because of the numerous different processes, there are many different types of electrodes in use (9), eg, prefabricated graphite, prefabricated carbon, self-baking, and composite electrodes (see Carbon). Graphite electrodes are used primarily in smaller furnaces or in sealed furnaces. Prebaked carbon electrodes, made in diameters of <152 cm or 76 by 61 cm rectangular, are used primarily in smelting furnaces where the process requkes them. However, self-baking electrodes are preferred because of thek lower cost. [Pg.123]

Bursting tests have been carried out on neatly a hundred thick-walled cylinders made of carbon, low alloy, and stainless steels, together with some nonferrous materials. The diameter ratio of the cylinders varied from 1.75 to 5.86, and some tests were carried out at 660°C. An analysis of the results (19) showed that 90% of the cylinders burst within 15% of the value given by equation 17. [Pg.80]

Hollow Fiber with Sorbent Walls. A cellulose sorbent and dialy2ing membrane hoUow fiber was reported in 1977 by Enka Glan2stoff AG (41). This hoUow fiber, with an inside diameter of about 300 p.m, has a double-layer waU. The inner waU consists of Cuprophan ceUulose and is very thin, approximately 8 p.m. The outer waU, which is ca 40-p.m thick, consists mainly of sorbent substance bonded by ceUulose. The advantage of such a fiber is that it combines the principles of hemodialysis with those of hemoperfusion. Two such fibers have been made one with activated carbon in the fiber waU, and one with aluminum oxide, which is a phosphate binder (also see Dialysis). [Pg.155]


See other pages where Carbon diameter is mentioned: [Pg.31]    [Pg.42]    [Pg.31]    [Pg.42]    [Pg.494]    [Pg.41]    [Pg.850]    [Pg.670]    [Pg.1218]    [Pg.1941]    [Pg.2702]    [Pg.228]    [Pg.118]    [Pg.468]    [Pg.470]    [Pg.472]    [Pg.339]    [Pg.339]    [Pg.358]    [Pg.766]    [Pg.845]    [Pg.149]    [Pg.1]    [Pg.187]    [Pg.232]    [Pg.207]    [Pg.259]    [Pg.366]    [Pg.349]    [Pg.73]    [Pg.277]    [Pg.122]    [Pg.80]    [Pg.86]    [Pg.374]    [Pg.498]    [Pg.69]    [Pg.72]    [Pg.162]    [Pg.170]    [Pg.317]    [Pg.492]    [Pg.493]    [Pg.494]    [Pg.166]   
See also in sourсe #XX -- [ Pg.366 ]




SEARCH



© 2024 chempedia.info