Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide activated

By quenching the polymerization with C1402 or Cl40 the determination of the number of propagation rate constants was found to be also possible for the two-component catalytic system TiCl2 + AlEt2Cl 158, 159). In contrast to alcohols, carbon dioxide and carbon monoxide under polymerization conditions react only with titanium-carbon active bonds and do not react with inactive aluminum-polymer bonds. [Pg.199]

Bacillus subtilis var. including Bacillus amyloliquefaciens), 131, (S3)20 Carbohydrates (Starches, Sugars, and Related Substances), 836 Carbon, Activated, 85, (S 1)115 Carbonate Identification Test, 753 Carbon Dioxide, 87, (S 1)12 Carbon Dioxide Detector Tube, 862 Carbon Monoxide Detector Tube, 862 o-Carboxybenzeneazodimethylaniline Hydrochloride, 861 (R)-3-Carboxy-2-hydroxy-/V,/V,/V-... [Pg.120]

Central to activated carbon is the activation process which enhances the original porosity in a porous carbon. Activation uses carbon dioxide, steam, zinc chloride, phosphoric acid and hydroxides of alkali metals, each with its own activation chemistry. The story of what happens to a molecule of carbon dioxide after entering the porosity of carbon at 800 °C leading to the eventual emergence of less than two molecules of carbon monoxide is fascinating and talks about atomic ballet . [Pg.540]

Metal dusting is a special form of catastrophic corrosion that takes place in carbon-containing environments where the carbon activity exceeds a value of 1 [26,27]. For Fe-based materials the principles are shown schematically in Figure 13.17. The catalytic effect of the metal or cement-ite surface leads to a dissociation of the carbon-containing gaseous species (CO , C ,Hy) with the effect of carbon uptake into the metal subsurface zone and carbon deposition (amorphous coke) on the surface. This mechanism is evidently influenced by the crystallographic situation of the metal grains on the material surface [28]. For carbon monoxide (CO) adsorbed on metal... [Pg.591]

Table 3 shows results obtained from a five-component, isothermal flash calculation. In this system there are two condensable components (acetone and benzene) and three noncondensable components (hydrogen, carbon monoxide, and methane). Henry s constants for each of the noncondensables were obtained from Equations (18-22) the simplifying assumption for dilute solutions [Equation (17)] was also used for each of the noncondensables. Activity coefficients for both condensable components were calculated with the UNIQUAC equation. For that calculation, all liquid-phase composition variables are on a solute-free basis the only required binary parameters are those for the acetone-benzene system. While no experimental data are available for comparison, the calculated results are probably reliable because all simplifying assumptions are reasonable the... [Pg.61]

We consider first some experimental observations. In general, the initial heats of adsorption on metals tend to follow a common pattern, similar for such common adsorbates as hydrogen, nitrogen, ammonia, carbon monoxide, and ethylene. The usual order of decreasing Q values is Ta > W > Cr > Fe > Ni > Rh > Cu > Au a traditional illustration may be found in Refs. 81, 84, and 165. It appears, first, that transition metals are the most active ones in chemisorption and, second, that the activity correlates with the percent of d character in the metallic bond. What appears to be involved is the ability of a metal to use d orbitals in forming an adsorption bond. An old but still illustrative example is shown in Fig. XVIII-17, for the case of ethylene hydrogenation. [Pg.715]

The reaction of trivalent carbocations with carbon monoxide giving acyl cations is the key step in the well-known and industrially used Koch-Haaf reaction of preparing branched carboxylic acids from al-kenes or alcohols. For example, in this way, isobutylene or tert-hutyi alcohol is converted into pivalic acid. In contrast, based on the superacidic activation of electrophiles leading the superelectrophiles (see Chapter 12), we found it possible to formylate isoalkanes to aldehydes, which subsequently rearrange to their corresponding branched ketones. [Pg.165]

Decomposition. Acetaldehyde decomposes at temperatures above 400°C, forming principally methane and carbon monoxide [630-08-0]. The activation energy of the pyrolysis reaction is 97.7 kj/mol (408.8 kcal/mol) (27). There have been many investigations of the photolytic and radical-induced decomposition of acetaldehyde and deuterated acetaldehyde (28—30). [Pg.50]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

In contrast to the situation with the alternative nitrogenases, but with the notable exception of the C. pasteurianum proteins, the component proteins from aU. Mo-based nitrogenases interact as heterologous crosses to form catalyticaHy active enzymes (52). Carbon monoxide, CO, is a potent inhibitor of aU. nitrogenase-cataly2ed substrate reductions, with the exception of reduction (126). Molecular hydrogen has a unique involvement with Mo-nitrogenase... [Pg.88]

Most chromium-based catalysts are activated in the beginning of a polymerization reaction through exposure to ethylene at high temperature. The activation step can be accelerated with carbon monoxide. Phillips catalysts operate at 85—110°C (38,40), and exhibit very high activity, from 3 to 10 kg HDPE per g of catalyst (300—1000 kg HDPE/g Cr). Molecular weights and MWDs of the resins are controlled primarily by two factors, the reaction temperature and the composition and preparation procedure of the catalyst (38,39). Phillips catalysts produce HDPE with a MJM ratio of about 6—12 and MFR values of 90—120. [Pg.383]

Ruthenium. Ruthenium, as a hydroformylation catalyst (14), has an activity signiftcandy lower than that of rhodium and even cobalt (22). Monomeric mthenium carbonyl triphenylphosphine species (23) yield only modest normal to branched regioselectivities under relatively forcing conditions. For example, after 22 hours at 120°C, 10 MPa (1450 psi) of carbon monoxide and hydrogen, biscarbonyltristriphenylphosphine mthenium [61647-76-5] ... [Pg.470]

High Surface Sodium. Liquid sodium readily wets many soHd surfaces. This property may be used to provide a highly reactive form of sodium without contamination by hydrocarbons. Powdered soHds having a high surface area per unit volume, eg, completely dehydrated activated alumina powder, provide a suitable base for high surface sodium. Other powders, eg, sodium chloride, hydride, monoxide, or carbonate, can also be used. [Pg.162]

The methods of choice for beryUium oxide in beryUium metal are inert gas fusion and fast neutron activation. In the inert gas fusion technique, the sample is fused with nickel metal in a graphite cmcible under a stream of helium or argon. BeryUium oxide is reduced, and the evolved carbon monoxide is measured by infrared absorption spectrometry. BeryUium nitride decomposes under the same fusion conditions and may be determined by measurement of the evolved nitrogen. Oxygen may also be determined by activation with 14 MeV neutrons (20). The only significant interferents in the neutron activation technique are fluorine and boron, which are seldom encountered in beryUium metal samples. [Pg.69]


See other pages where Carbon monoxide activated is mentioned: [Pg.961]    [Pg.302]    [Pg.211]    [Pg.108]    [Pg.109]    [Pg.994]    [Pg.276]    [Pg.477]    [Pg.299]    [Pg.83]    [Pg.59]    [Pg.27]    [Pg.40]    [Pg.1150]    [Pg.5]    [Pg.577]    [Pg.331]    [Pg.440]    [Pg.505]    [Pg.511]    [Pg.383]    [Pg.313]    [Pg.313]    [Pg.506]    [Pg.172]    [Pg.172]    [Pg.240]    [Pg.475]    [Pg.476]    [Pg.156]    [Pg.164]    [Pg.391]    [Pg.421]    [Pg.377]   
See also in sourсe #XX -- [ Pg.44 , Pg.45 , Pg.53 , Pg.55 ]




SEARCH



Carbon monoxide activation

Carbon monoxide activities

© 2024 chempedia.info