Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbides reactions with

At about the same time that the Birkeland-Eyde process was developed, the Frank-Caro cyanamide process was commercialized (14). In this process limestone is heated to produce lime, which then reacts with carbon in a highly energy-demanding reaction to give calcium carbide. Reaction with N2 gives calcium cyanamide [150-62-7] which hydrolyzes to ammonia and calcium carbonate (see Cyanamides). [Pg.83]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Sihca is reduced to siUcon at 1300—1400°C by hydrogen, carbon, and a variety of metallic elements. Gaseous siUcon monoxide is also formed. At pressures of >40 MPa (400 atm), in the presence of aluminum and aluminum haUdes, siUca can be converted to silane in high yields by reaction with hydrogen (15). SiUcon itself is not hydrogenated under these conditions. The formation of siUcon by reduction of siUca with carbon is important in the technical preparation of the element and its alloys and in the preparation of siUcon carbide in the electric furnace. Reduction with lithium and sodium occurs at 200—250°C, with the formation of metal oxide and siUcate. At 800—900°C, siUca is reduced by calcium, magnesium, and aluminum. Other metals reported to reduce siUca to the element include manganese, iron, niobium, uranium, lanthanum, cerium, and neodymium (16). [Pg.471]

In the manufacture of highly resident flexible foams and thermoset RIM elastomers, graft or polymer polyols are used. Graft polyols are dispersions of free-radical-polymerized mixtures of acrylonitrile and styrene partially grafted to a polyol. Polymer polyols are available from BASF, Dow, and Union Carbide. In situ polyaddition reaction of isocyanates with amines in a polyol substrate produces PHD (polyhamstoff dispersion) polyols, which are marketed by Bayer (21). In addition, blending of polyether polyols with diethanolamine, followed by reaction with TDI, also affords a urethane/urea dispersion. The polymer or PHD-type polyols increase the load bearing properties and stiffness of flexible foams. Interreactive dispersion polyols are also used in RIM appHcations where elastomers of high modulus, low thermal coefficient of expansion, and improved paintabiUty are needed. [Pg.347]

Chlorination. Historically, the production of zirconium tetrachloride from zircon sand involved first a reduction to carbide nitride (see above) followed by the very exothermic reaction of the cmshed carbide nitride with chlorine gas in a water-cooled vertical shaft furnace ... [Pg.430]

Boron Triiodide. Boron ttiiodide is not manufactured on a large scale. Small-scale production of BI from boron and iodine is possible in the temperature range 700—900°C (70—72). Excess I2 can be removed as Snl by reaction with Sn, followed by distillation (71). The reaction of metal tetrahydroborates and I2 is convenient for laboratory preparation of BI (73,74). BI can also by synthesized from B2H and HI in a furnace at 250°C (75), or by the reaction of B with excess Agl or Cul between 450—700°C, under vacuum (76). High purity BI has been prepared by the reaction of I2 with mixtures of boron carbide and calcium carbide at elevated temperatures. [Pg.223]

Vanadium Carbide. Vanadium pentoxide [1314-62-17, V2O5, or vanadium trioxide [1314-34-7] VO3, are the most satisfactory oxides for the preparation of VC. Vanadium pentoxide is best prepared by igniting chemically pure ammonium vanadate [7803-55-6] NH VO, in the presence of moist oxygen to avoid reaction with nitrogen V2O3 is obtained by reduction of V2O3 with hydrogen (see Vanadium compounds). [Pg.452]

Reaction With Water. The exothermic reaction of calcium carbide and water-yielding acetylene forms the basis of the most important industrial use of calcium carbide. [Pg.458]

Reaction With Sulfur. An important use of calcium carbide has developed in the iron (qv) and steel (qv) industries where the carbide has been found to be an effective desulfurizing agent for blast-furnace iron. Calcium carbide and sulfur present in the molten metal react... [Pg.458]

Reaction With Nitrogen. Calcium cyanamide is produced from calcium carbide... [Pg.458]

Further down, ca 75 cm below the electrode tips, the mix is hot enough (2200—2500°C) to allow the lime to melt. The coke does not melt and the hquid lime percolates downward through the relatively fixed bed of coke forming calcium carbide, which is Hquid at this temperature. Both Hquids erode coke particles as they flow downward. The weak carbide first formed is converted to richer material by continued contact and reaction with coke particles. The carbon monoxide gas produced in this area must be released by flowing back up through the charge. The process continues down to the taphole level. Material in this area consists of soHd coke wetted in a pool of Hquid lime and Hquid calcium carbide at the furnace bottom. [Pg.461]

Sibcon-carbide SiC, 80-90% 160 4175 Slightly acid Excellent 15 Very low Excellent Excellent Sbgbt reaction with HF Attacked at high temperatures... [Pg.2477]

Industrial use of HCl gas for the manufacture of inorganic chemicals includes the preparation of anhydrous NH4CI by direct reaction with NH3 and the synthesis of anhydrous metal chlorides by reaction with appropriate carbides, nitrides, oxides or even the free metals themselves, e,g, ... [Pg.811]

Normal Fischer esterification of tertiary alcohols is unsatisfactory because the acid catalyst required causes dehydration or rearrangement of the tertiary substrate. Moreover, reactions with acid chlorides or anhydrides are also of limited value for similar reasons. However, treatment of acetic anhydride with calcium carbide (or calcium hydride) followed by addition of the dry tertiary alcohol gives the desired acetate in good yield. [Pg.62]

The solid corrosion products in carbon dioxide and carbon monoxide are uranium dioxide, uranium carbides and carbon. The major reaction with carbon dioxide results in the formation of carbon monoxide ... [Pg.908]

Several other processes for extracting Be from beryl have been patented the most feasible involves the formation of BeCl2 by direct chlorination of beryl under reducing conditions several volatile chlorides are produced by this reaction (BeCl2, AICI3, SiCl4 and FeClj) and are separated by fractional condensation to give the product in a pure state. Other methods involve the fusion of beryl with carbon and pyrites, with calcium carbide and with silicon. [Pg.363]

Hydrochloric acid is thought to give dangerous reactions with metal carbides. There are no further details regarding risks. The dangers may be linked to the acetylene produced. [Pg.188]

Thus, all copper salts give an explosive reaction with calcium carbide. This is due to the formation of explosive copper acetylide, which is formed from cupric or cuprous cation and the acetylene formed. [Pg.207]


See other pages where Carbides reactions with is mentioned: [Pg.514]    [Pg.664]    [Pg.751]    [Pg.860]    [Pg.309]    [Pg.514]    [Pg.664]    [Pg.751]    [Pg.860]    [Pg.309]    [Pg.34]    [Pg.113]    [Pg.122]    [Pg.524]    [Pg.557]    [Pg.803]    [Pg.909]    [Pg.929]    [Pg.1084]    [Pg.321]    [Pg.127]    [Pg.379]    [Pg.379]    [Pg.220]    [Pg.54]    [Pg.325]    [Pg.466]    [Pg.386]    [Pg.908]    [Pg.426]    [Pg.198]    [Pg.6]    [Pg.28]   


SEARCH



Calcium carbide reaction with

Carbides, reactions

Graphite reaction with carbides

Metal carbides reactions with

Reactions of niobium-containing met-cars and titanium carbide clusters with acetone

Thorium carbide, reaction with iodine

© 2024 chempedia.info