Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary instabilities pattern formation

In addition, patterns created by surface instabilities can be used to pattern polymer films with a lateral resolution down to 100 nm [7]. Here, I summarize various possible approaches that show how instabilities that may take place during the manufacture of thin films can be harnessed to replicate surface patterns in a controlled fashion. Two different approaches are reviewed, together with possible applications (a) patterns that are formed by the demixing of a multi-component blend and (b) pattern formation by capillary instabilities. [Pg.2]

All the examples of pattern formation and replication by capillary instabilities discussed so far rely on the amplification of a single very narrow band of instability wavelength. Pattern replication succeeds only if (within certain bounds—see for example Fig. 1.16) the length scale of the master pattern matches the instability wavelength. For many practical applications, the simultaneous replication of more than one length scale and more than one material is required. [Pg.20]

In applications in the semiconductor industry, polymer structures are required on length scales down to individual molecules. A bottom-up approach is better than a top-down approach in order to achieve this. A lateral resolution less than 100 nm can be created by surface instabilities and pattern formation in polymer films. Steiner [6] discussed demixing of polymer blends and pattern formation by capillary instabilities for nanostructure formation. [Pg.153]

Different phase separated morphologies can be found in different polymer solvent systems. The pattern formation consists of several stages. In the initial stage, phase separation results in a layered morphology of the two solvent swollen phases. As more solvent evaporates, this double layer is destabilized in two ways (1) capillary instability of the interface, and (2) surface instability. Each of the mechanisms results in different morphological length scales. Core shell spherical domains in phase-separated ternary systems have also been found. The shell thickness can be a few nanometers. [Pg.154]


See other pages where Capillary instabilities pattern formation is mentioned: [Pg.229]    [Pg.4]    [Pg.8]    [Pg.21]    [Pg.164]    [Pg.264]    [Pg.152]    [Pg.218]    [Pg.257]    [Pg.257]    [Pg.288]    [Pg.227]   
See also in sourсe #XX -- [ Pg.8 , Pg.16 ]




SEARCH



Capillary instability

Pattern formation

© 2024 chempedia.info