Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction equilibrium calculations

Calculate reaction equilibrium constant. Thus, ATjooqk = e638/0-987)(iooo) = l 319... [Pg.68]

The above equation enables us to calculate the equilibrium constant for any value of AG or vice versa, and we readily see that for a reaction to go to completion , i.e. for K to be large, AG needs to be large and negative. [Pg.66]

Because of the severe demands placed on us for aceuraey if we tre to calculate an equilibrium constant, let us choose a simple reaction, the isomerization of but-2-eiic,... [Pg.164]

The standard Gibbs energy change of reaction, is used ia the calculation of equilibrium compositions the standard heat of reaction, is used iu... [Pg.501]

The standard Gibbs-energy change of reaction AG° is used in the calculation of equilibrium compositions. The standard heat of reaclion AH° is used in the calculation of the heat effects of chemical reaction, and the standard heat-capacity change of reaction is used for extrapolating AH° and AG° with T. Numerical values for AH° and AG° are computed from tabulated formation data, and AC° is determined from empirical expressions for the T dependence of the C° (see, e.g., Eq. [4-142]). [Pg.542]

When the kinetics are unknown, still-useful information can be obtained by finding equilibrium compositions at fixed temperature or adiabatically, or at some specified approach to the adiabatic temperature, say within 25°C (45°F) of it. Such calculations require only an input of the components of the feed and produc ts and their thermodynamic properties, not their stoichiometric relations, and are based on Gibbs energy minimization. Computer programs appear, for instance, in Smith and Missen Chemical Reaction Equilibrium Analysis Theory and Algorithms, Wiley, 1982), but the problem often is laborious enough to warrant use of one of the several available commercial services and their data banks. Several simpler cases with specified stoichiometries are solved by Walas Phase Equilibiia in Chemical Engineering, Butterworths, 1985). [Pg.2077]

Some chemical reactions are reversible and, no matter how fast a reaction takes place, it cannot proceed beyond the point of chemical equilibrium in the reaction mixture at the specified temperature and pressure. Thus, for any given conditions, the principle of chemical equilibrium expressed as the equilibrium constant, K, determines how far the reaction can proceed if adequate time is allowed for equilibrium to be attained. Alternatively, the principle of chemical kinetics determines at what rate the reaction will proceed towards attaining the maximum. If the equilibrium constant K is very large, for all practical purposes the reaction is irreversible. In the case where a reaction is irreversible, it is unnecessary to calculate the equilibrium constant and check the position of equilibrium when high conversions are needed. [Pg.59]

Chemical reaction equilibrium calculations are structured around another thermodynamic term called tlie free energy. Tliis so-callcd free energy G is a property that also cannot be defined easily without sonic basic grounding in tlicmiodynamics. However, no such attempt is made here, and the interested reader is directed to tlie literature. " Note that free energy has the same units as entlialpy and internal energy and may be on a mole or total mass basis. Some key equations and information is provided below. [Pg.123]

The following equation is used to calculate tlie chemical reaction equilibrium constant K at a temperature T. [Pg.123]

It is reasonable to expeet that models in ehemistry should be capable of giving thermodynamic quantities to chemical accuracy. In this text, the phrase thermodynamic quantities means enthalpy changes A//, internal energy changes AU, heat capacities C, and so on, for gas-phase reactions. Where necessary, the gases are assumed ideal. The calculation of equilibrium constants and transport properties is also of great interest, but I don t have the space to deal with them in this text. Also, the term chemical accuracy means that we should be able to calculate the usual thermodynamic quantities to the same accuracy that an experimentalist would measure them ( 10kJmol ). [Pg.319]

The production of ammonia is of historical interest because it represents the first important application of thermodynamics to an industrial process. Considering the synthesis reaction of ammonia from its elements, the calculated reaction heat (AH) and free energy change (AG) at room temperature are approximately -46 and -16.5 KJ/mol, respectively. Although the calculated equilibrium constant = 3.6 X 108 at room temperature is substantially high, no reaction occurs under these conditions, and the rate is practically zero. The ammonia synthesis reaction could be represented as follows ... [Pg.144]

Redox reactions, like all reactions, eventually reach a state of equilibrium. It is possible to calculate the equilibrium constant for a redox reaction from the standard voltage. To do that, we start with the relation obtained in Chapter 17 ... [Pg.491]

Write an equationforthe reaction of chloroacetic acid (Ka = 1.5 X 103) with trimethylamine (Kj, = 5.9 X 10 5). Calculate die equilibrium constant for die reaction. If 0.10 M solutions of these two species are mixed, what will be their concentrations at equilibrium ... [Pg.609]

It is now possible to calculate the equilibrium constants of oxidation-reduction reactions, and thus to determine whether such reactions can find application in quantitative analysis. Consider first the simple reaction ... [Pg.68]

This equation may be employed to calculate the equilibrium constant of any redox reaction, provided the two standard potentials Ef and Ef are known from the value of K thus obtained, the feasibility of the reaction in analysis may be ascertained. [Pg.70]

The determination of ArG° for a chemical reaction is very useful in predicting the course of the reaction. Qualitatively, we will show in Chapter 5 that with ArC°<0, the reaction is spontaneous, at least when products and reactants are in their standard state condition. Quantitatively, we will see in Chapter 9 that ArG° can be used to calculate the equilibrium constant for the reaction, from which the final equilibrium conditions can be determined. [Pg.196]

To calculate the equilibrium composition of a reaction mixture, set up an equilibrium table in terms of changes in the concentrations of reactants and products, express the equilibrium constant in terms of those changes, and solve the resulting equation. [Pg.497]

Calculate the equilibrium constant at 25°C for each of the following reactions, using data in Appendix 2A ... [Pg.508]

The following plot shows how the partial pressures of reactant and products vary with time for the decomposition of compound A into compounds B and C. All three compounds are gases. Use this plot to do the following (a) Write a balanced chemical equation for the reaction, (h) Calculate the equilibrium constant for the reaction, (c) Calculate the value of Kc for the reaction at 25°C. [Pg.512]

In order to generate the starting material for a polymer that is used in water bottles, hydrogen is removed from the ethane in natural gas to produce ethene in the catalyzed reaction C,H6(g) H,(g) + C,ll4(g). Use the information in Appendix 2A to calculate the equilibrium constant for the reaction at 298 K. (a) If the reaction is begun by adding the catalyst to a flask containing C,H6 at 10.0 bar, what will be the partial pressure of the C,H4 at equilibrium (b) Identify three steps the manufacturer can take to increase the yield of product,... [Pg.513]

One of the most useful applications of standard potentials is in the calculation of equilibrium constants from electrochemical data. The techniques that we develop here can be applied to any kind of reaction, including neutralization and precipitation reactions as well as redox reactions, provided that they can be expressed as the difference of two reduction half-reactions. [Pg.624]

Calculate the equilibrium constant for a reaction from the standard cell emf (Toolbox 12.3 and Example 12.8). [Pg.641]

However, considering practical limitations, that is, the availability of optically pure enantiomers, E values are more commonly determined on racemates by evaluating the enantiomeric excess values as a function of the extent of conversion in batch reactions. For irreversible reactions, the E value can be calculated from Equation 1 (when the enantiomeric excess ofthe product is known) or from Equation 2 (when the enantiomeric excess ofthe substrate is knovm) [la]. For reversible reactions, which may be the case in enzymatic resolution carried out in organic solvents (especially at extents of conversion higher than 40%), Equations 3 or 4, in which the reaction equilibrium constant has been introduced, should be used [lb]. [Pg.3]

Values of the equilibrium constant K = [BrCl]2/([Br2][Cl2]) in the gaseous phase have been determined experimentally values were typically in the range 6.57-9, with 40-46 % dissociation at room temperature (ref. 2). The weak temperature dependence of the equilibrium constant indicates low heat of reaction indeed, it has been calculated from equilibrium data to be - 0.406 kcal/mole BrCl (ref. 2). [Pg.319]

Equilibrium Compositions for Single Reactions. We turn now to the problem of calculating the equilibrium composition for a single, homogeneous reaction. The most direct way of estimating equilibrium compositions is by simulating the reaction. Set the desired initial conditions and simulate an isothermal, constant-pressure, batch reaction. If the simulation is accurate, a real reaction could follow the same trajectory of composition versus time to approach equilibrium, but an accurate simulation is unnecessary. The solution can use the method of false transients. The rate equation must have a functional form consistent with the functional form of K,i,ermo> e.g., Equation (7.38). The time scale is unimportant and even the functional forms for the forward and reverse reactions have some latitude, as will be illustrated in the following example. [Pg.240]

Concentrations in Water and Particles. In order to obtain the rates of reaction, the concentrations of the two monomers and the chain transfer agent in the water and polymer phases were calculated using equilibrium partition coefficients (H). ... [Pg.364]

The quantitative treatment of a reaction equilibrium usually involves one of two things. Either the equilibrium constant must be computed from a knowledge of concentrations, or equilibrium concentrations must be determined from a knowledge of initial conditions and Kgq. In this section, we describe the basic reasoning and techniques needed to solve equilibrium problems. Stoichiometry plays a major role in equilibrium calculations, so you may want to review the techniques described in Chapter 4, particularly Section 4- on limiting reactants. [Pg.1163]


See other pages where Reaction equilibrium calculations is mentioned: [Pg.139]    [Pg.151]    [Pg.159]    [Pg.204]    [Pg.79]    [Pg.186]    [Pg.344]    [Pg.451]    [Pg.493]    [Pg.487]    [Pg.509]    [Pg.509]    [Pg.509]    [Pg.510]    [Pg.513]    [Pg.602]    [Pg.625]    [Pg.648]    [Pg.1010]    [Pg.19]   


SEARCH



Calculation of Equilibrium Conversions for Single Reactions

Calculations reactions

Chemical reaction equilibrium thermochemical data calculations

Equilibrium Calculations for Gas-Phase and Heterogeneous Reactions

Equilibrium calculations

Equilibrium calculations chemical reactions

Equilibrium constant redox reaction calculation

Multiphase Reaction-Equilibrium Calculations

One-Phase Reaction-Equilibrium Calculations

Preliminaries to Reaction-Equilibrium Calculations

Problem Calculate the equilibrium constant of a complex reversible reaction

Values Associated with Reactions - Equilibrium Calculations

© 2024 chempedia.info