Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium elemental properties

The number of chemical elements has now reached 109, and the list is growing. Fortunately for students, only about 40 are relevant to basic chemistry. Please take a reconnaissance glance at the periodic table of chemical elements (found at the end of this chapter) and find calcium, element number 20. You need to be acquainted with the symbol and general properties of the 20 simplest elements up to calcium, plus another 20 of chemical significance that you will encounter in this book. [Pg.10]

In the attempt to synthesize molecular sieves with isomorphous substitutions of A1 and/or Si by the divalent calcium element in the tetrahedral positions, we obtained a new calcium silicate phase by inclusion of heteroatom calcium into silicate sols. The characterization results showed that as-synthesized calcium silicate, named CAS-1 (Calcium silicate No. 1), was a novel zeolite-like crystal material with the cation reversibly exchangeable and selectively adsorptive properties. In this paper, the effects of composition of raw materials, reaction temperature and the different alkali ion on the hydrothermal synthesis of calcosilicate crystal material CAS-1 were investigated and the uptake of different cation on the thermal stability of CAS-1 structure was also examined. The sample was characterized by XRD, TEM, SEM, DT-TGA, BET, AAS and chemical analysis. [Pg.234]

In the periodic table, calcium, element 20, is surrounded by elements 12, 19, 21, and 38. Which of these have ph) ical and chemical properties most resembling calcium ... [Pg.211]

Selective Reduction. In aqueous solution, europium(III) [22541 -18-0] reduction to europium(II) [16910-54-6] is carried out by treatment with amalgams or zinc, or by continuous electrolytic reduction. Photochemical reduction has also been proposed. When reduced to the divalent state, europium exhibits chemical properties similar to the alkaline-earth elements and can be selectively precipitated as a sulfate, for example. This process is highly selective and allows production of high purity europium fromlow europium content solutions (see Calcium compounds Strontiumand strontium compounds). [Pg.544]

Rea.ctivity ofLea.d—Ca.lcium Alloys. Precise control of the calcium content is required to control the grain stmcture, corrosion resistance, and mechanical properties of lead—calcium alloys. Calcium reacts readily with air and other elements such as antimony, arsenic, and sulfur to produce oxides or intermetaUic compounds (see Calciumand calciumalloys). In these reactions, calcium is lost and suspended soHds reduce fluidity and castibiUty. The very thin grids that are required for automotive batteries are difficult to cast from lead—calcium alloys. [Pg.59]

Tia is also used as an ahoyiag element ia lead—antimony alloys to improve fluidity and to prevent drossiag, ia lead—calcium alloys to improve mechanical properties and enhance electrochemical performance, ia lead—arsenic alloys to maintain a stable composition, and as an additive to low melting alloys. [Pg.62]

In general, the chemistry of inorganic lead compounds is similar to that of the alkaline-earth elements. Thus the carbonate, nitrate, and sulfate of lead are isomorphous with the corresponding compounds of calcium, barium, and strontium. In addition, many inorganic lead compounds possess two or more crystalline forms having different properties. For example, the oxides and the sulfide of bivalent lead are frequendy colored as a result of their state of crystallisation. Pure, tetragonal a-PbO is red pure, orthorhombic P PbO is yeUow and crystals of lead sulfide, PbS, have a black, metallic luster. [Pg.67]

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

Strontium [7440-24-6] Sr, is in Group 2 (IIA) of the Periodic Table, between calcium and barium. These three elements are called alkaline-earth metals because the chemical properties of the oxides fall between the hydroxides of alkaU metals, ie, sodium and potassium, and the oxides of earth metals, ie, magnesium, aluminum, and iron. Strontium was identified in the 1790s (1). The metal was first produced in 1808 in the form of a mercury amalgam. A few grams of the metal was produced in 1860—1861 by electrolysis of strontium chloride [10476-85-4]. [Pg.472]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

Barium is a member of the aLkaline-earth group of elements in Group 2 (IIA) of the period table. Calcium [7440-70-2], Ca, strontium [7440-24-6], Sr, and barium form a closely aUied series in which the chemical and physical properties of the elements and thek compounds vary systematically with increa sing size, the ionic and electropositive nature being greatest for barium (see Calcium AND CALCIUM ALLOYS Calcium compounds Strontium and STRONTIUM compounds). As size increases, hydration tendencies of the crystalline salts increase solubiUties of sulfates, nitrates, chlorides, etc, decrease (except duorides) solubiUties of haUdes in ethanol decrease thermal stabiUties of carbonates, nitrates, and peroxides increase and the rates of reaction of the metals with hydrogen increase. [Pg.475]

Industrial production media must also contain sources of potassium, phosphorous and magnesium. Trace elements may also have to be added. The water used for medium preparation will be from the public water supply or other readily available source. The quality of the water is carefully monitored because the presence of certain metal salts, for example, calcium, copper and iron, can have adverse effects on both the growth of the oiganism and the rheological properties of the exopolysaccharides. [Pg.204]

The material is impact-sensitive when dry and is supplied and stored damp with ethanol. It is used as a saturated solution and it is important to prevent total evaporation, or the slow growth of large crystals which may become dried and shock-sensitive. Lead drains must not be used, to avoid formation of the detonator, lead azide. Exposure to acid conditions may generate explosive hydrazoic acid [1], It has been stated that barium azide is relatively insensitive to impact but highly sensitive to friction [2], Strontium, and particularly calcium azides show much more marked explosive properties than barium azide. The explosive properties appear to be closely associated with the method of formation of the azide [3], Factors which affect the sensitivity of the azide include surface area, solvent used and ageing. Presence of barium metal, sodium or iron ions as impurities increases the sensitivity [4], Though not an endothermic compound (AH°f —22.17 kJ/mol, 0.1 kj/g), it may thermally decompose to barium nitride, rather than to the elements, when a considerable exotherm is produced (98.74 kJ/mol, 0.45 kJ/g of azide) [5]. [Pg.94]

An important point to note here and elsewhere in the description of cell activity is that the particular nature of calcium biochemistry, including the availability of the element and its necessary rejection from the prokaryote cell, when linked to stimulated input and interaction with specific internal proteins of selected properties, made it uniquely suitable for the function as an elementary ionic fast in/out messenger. It was then capable of signalling to cell changes once cell size and organisation increased beyond the elementary level of a cell with one small, rapidly... [Pg.304]

The packing arrangement of atoms or molecules in a crystalline solid phase is generally not unique, and for organic molecules in particular, it is common for two or more crystalline forms of the same substance to exist. The most familiar example in elemental terms is Graphite and Diamond. Both are composed entirely of the element Carbon, however their ciystal structures are very different, and so too are their physical properties. Calcium Carbonate is another common example with three polymorphic forms Calcite, Aragonite and Vaterite. [Pg.33]


See other pages where Calcium elemental properties is mentioned: [Pg.63]    [Pg.8]    [Pg.13]    [Pg.10]    [Pg.124]    [Pg.241]    [Pg.62]    [Pg.539]    [Pg.540]    [Pg.452]    [Pg.511]    [Pg.241]    [Pg.948]    [Pg.742]    [Pg.412]    [Pg.116]    [Pg.44]    [Pg.701]    [Pg.53]    [Pg.163]    [Pg.435]    [Pg.441]    [Pg.28]    [Pg.65]    [Pg.2]    [Pg.305]    [Pg.305]    [Pg.355]    [Pg.122]    [Pg.95]    [Pg.207]    [Pg.240]    [Pg.243]    [Pg.8]    [Pg.13]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Calcium elemental

Calcium properties

Elements properties

© 2024 chempedia.info