Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cadmium coatings chromate passivation

Full chromate passivation (Section 15.3) improves the corrosion resistance of both zinc and cadmium towards all environments and is applied for a wide range of applications. Clear and olive-coloured chromate coatings can also be applied for certain purposes. The highest degrees of corrosion protection... [Pg.484]

Post-Treatments. Although many post-treatments have been used over plated metals, chromate conversion coatings remain as the most popular. Chromates are used to improve corrosion resistance, provide good paint and adhesive base properties, or to produce brighter or colored finishes. Formulations are usually proprietary, and variations are marketed for use on zinc, zinc alloys, cadmium, copper and copper alloys, and silver (157). Chromates are also used on aluminum and magnesium alloys (158,159). More recently, chromate passivation has been used to extend salt spray resistance of autocatalytic nickel plated parts. [Pg.165]

Where the corrosion resistance of a coating depends upon its passivity, it is common to follow plating with a conversion coating process to strengthen the passive film. Zinc, cadmium and tin in particular are treated with chromate solutions which thicken their protective oxides and also incorporate in it complex chromates (see Section 1S.3). There are many proprietary processes, especially for zinc and cadmium. Simple immersion processes are used for all three coatings, while electrolytic passivation is us on tinplate lines. Chromate immersion processes are known to benefit copper, brass and silver electrodeposits, and electrolytic chromate treatments improve the performance of nickel and chromium coatings, but they are not used to the extent common for the three first named. [Pg.393]

While it is possible to bond to a freshly abraded or cleaned metal surface, chemical treatments are preferred for rendering the metal surface inactive to corrosion over time. For low carbon steel, phosphatising is the recommended pre-bond surface preparation treatment. Stainless steel should be passivated or acid etched, while titanium is usually treated with a hydrofluoric acid pickle. Almninium or magnesium are best treated with a chromate conversion coating. Zinc and cadmium are generally prepared mechanically but a phosphate or chromic acid treatment may be used. Brass and copper may be treated with an ammonium persulphate etch or an acid-ferric chloride etch. [Pg.68]

The classical zinc-corrosion inhibitor has been mercuric or mercurous chloride, which forms an amalgam with the zinc. Cadmium and lead, which reside in the zinc alloy, also provide zinc anode corrosion protection. Other materials like potassium chromate or dichromate, used successfully in the past, form oxide films on the zinc and protect via passivation. Surface-active organic compounds, which coat the zinc, usually from solution, improve the wetting characteristic of the surface unifying the potential. Inhibitors are usually introduced into the cell via the electrolyte or as part of the coating on the paper separator. Zinc cans could be pretreated however, this is ordinarily not practical. [Pg.196]

Zinc- or cadmium-electroplated steel articles are frequently passivated with a chromate coating in order to enhance corrosion resistance, improve solder-ability and provide a pleasing (e.g. iridescent) finish. [Pg.441]


See other pages where Cadmium coatings chromate passivation is mentioned: [Pg.165]    [Pg.565]    [Pg.456]    [Pg.485]   
See also in sourсe #XX -- [ Pg.13 , Pg.15 , Pg.38 , Pg.41 , Pg.48 ]

See also in sourсe #XX -- [ Pg.13 , Pg.15 , Pg.38 , Pg.41 , Pg.48 ]




SEARCH



Cadmium coatings

Chromate passivator

Coating passivating

Coatings chromate

Passivators chromates

© 2024 chempedia.info