Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C-Containing Polymers

Metallocene polymers, which contain a metal sandwiched usually between the cyclopentadienyl moieties, are the most investigated M—C-containing polymers ". Ferrocene containing metallocenes are by far the most studied, followed by cobalticen-ium, with some work where the metal is Ni, Rh, Ro or Ru. [Pg.287]

A typical example is total monomers. 100 sodium stearate, 5 potassium persulfate, 0.3 lauryl mercaptan, 0.4 to 0.7 and water, 200 parts. In this formula, 75 parts of 1,3-butadiene and 25 parts of 4-methyl-2-vinylthiazole give 86% conversion to a tacky rubber-like copolymer in 15 hr at 45°C. The polymer contains 62% benzene-insoluble gel. Sulfur analysis indicates that the polymer contains 21 parts of combined 4-methyl-2-vinylthiazole (312). Butadiene alone in the above reaction normally requires 25 hr to achieve the same conversion, thus illustrating the acceleration due to the presence of 4-methyl-2-vinylthiazole. [Pg.398]

PVF has low solubdity in all solvents below about 100°C (61). Polymers with greater solubdity have been prepared using 0.1% 2-propanol polymerization modifier and were characterized in /V, /V- dim ethyl form am i de solution containing 0.1 AlLiBr. ranged from 76,000 to 234,000... [Pg.380]

New heat-resistant polymers containing -iiitrophenyl-substituted quinoxaline units and imide rings as well as flexible amide groups have been synthesi2ed by polycondensation reaction of a dianainoquinoxaline derivative with diacid dichlorides (80). These polymers are easily soluble in polar aprotic solvents with inherent viscosities in the range of 0.3—0.9 dL/g in NMP at 20°C. AH polymers begin to decompose above 370°C. [Pg.537]

Nuclear Magnetic Resonance Spectroscopy. Bmker s database, designed for use with its spectrophotometers, contains 20,000 C-nmr and H-nmr, as weU as a combined nmr-ms database (66). Sadder Laboratories markets a PC-based system that can search its coUection of 30,000 C-nmr spectra by substmcture as weU as by peak assignments and by fiiU spectmm (64). Other databases include one by Varian and a CD-ROM system containing polymer spectra produced by Tsukuba University, Japan. CSEARCH, a system developed at the University of Vieima by Robien, searches a database of almost 16,000 C-nmr. Molecular Design Limited (MDL) has adapted the Robien database to be searched in the MACCS and ISIS graphical display and search environment (63). Projects are under way to link the MDL system with the Sadder Hbrary and its unique search capabiHties. [Pg.121]

A hquid-phase reaction in which TiCl is reacted with hquid ammonia at —35 C to form an adduct that is subsequendy calcined at 1000°C has also been proposed (35). Preparation of titanium nitride and titanium carbonitride by the pyrolysis of titanium-containing polymer precursors has also been reported (36). [Pg.119]

They show good to excellent resistance to highly aromatic solvents, polar solvents, water and salt solutions, aqueous acids, dilute alkaline solutions, oxidative environments, amines, and methyl alcohol. Care must be taken in choice of proper gum and compound. Hexafluoropropylene-containing polymers are not recommended for use in contact with ammonia, strong caustic (50% sodium hydroxide above 70°C), and certain polar solvents such as methyl ethyl ketone and low molecular weight esters. However, perfluoroelastomers can withstand these fluids. Propylene-containing fluorocarbon polymers can tolerate strong caustic. [Pg.509]

Polytetrafluoroethylene contains only C—C and C—F bonds. These are both very stable and the polymer is exceptionally inert. A number of other fluorine-containing polymers cU e available which may contain in addition C—H and C—Cl bonds. These are somewhat more reactive and those containing C—H bonds may be cross-linked by peroxides and certain diamines and di-isocyanates. [Pg.95]

In turn the oxazoline-containing polymer may then react very rapidly (e.g. at 240°C) with such groups as carboxyls, amines, phenols, anhydrides or epoxides, which may be present in other polymers. This reaction will link the two polymers by a rearrangement reaction similar to that involved in a rearrangement polymerisation without the evolution of water or any gaseous condensation products (Figure 7.14). [Pg.156]

The polymer, like many fluorine-containing polymers has very good weathering resistance and may also be used continuously up to 150°C. Outside of the electrical field it finds use in fluid handling, in hot water piping systems, in packaging and in chemical plant. A widely used specific application for PVDF is in ultra-pure water systems for the semiconductor industry. [Pg.377]

Hydrolytic instability or, alternatively, a tendency to revert to simple forms is shown by a number of sulphur-containing polymers. Some examples are shown in Figure 29.16 (a) plastic sulphur , (b) a polymer unstable at room temperature, (c) and (d) the (3 form of suphur trioxide. [Pg.846]

Eor amine-containing polymers, DMF is often a good choice of solvent. DMF can also be a good choice for polymers of higher carboxylic acid content. However, DMF does present some experimental difficulties. It must be run at an elevated temperature, typically 60°C, because of its viscosity. Also, because most polymers have a much lower refractive index response in DMF, the signal-to-noise ratio for a polymer in this solvent is diminished versus the same ratio for common acrylates in THF. [Pg.553]

It has been observed that all the phenoxaphosphine ring-containing polymers have excellent thermal stability and show better heat resistance than open-chain phosphorus containing polymers. The phenoxaphosphine polymers containing aromatic rings in the backbone show little degradation below 400°C in air. [Pg.47]

The authors of [40] used L. L. Blyler s and T. K. Kwei s formula to process experimental data [41, 8] and obtained good correlation between theory and experiment. In all the processed experiments viscosity was established in accordance with pressure at channel input. To describe data presented by C. J. Ma and C. D. Han [2-5], who1 studied freon-containing polymer melts, the same paper supposed that the entire volume of gas is expended in part on the increase of the free volume of the composition, and that the occupied volume also changes in its presence. This consideration made it possible for the authors of [40] to attain fair correlation between theory and practice. This makes, in our opinion, the ideas expressed in [39, 40] worthy of the most serious attention, however critical the following evaluation of these works may appear to the reader. [Pg.109]


See other pages where C-Containing Polymers is mentioned: [Pg.130]    [Pg.163]    [Pg.287]    [Pg.287]    [Pg.288]    [Pg.289]    [Pg.290]    [Pg.291]    [Pg.292]    [Pg.293]    [Pg.294]    [Pg.303]    [Pg.304]    [Pg.305]    [Pg.173]    [Pg.376]    [Pg.2569]    [Pg.376]    [Pg.130]    [Pg.163]    [Pg.287]    [Pg.287]    [Pg.288]    [Pg.289]    [Pg.290]    [Pg.291]    [Pg.292]    [Pg.293]    [Pg.294]    [Pg.303]    [Pg.304]    [Pg.305]    [Pg.173]    [Pg.376]    [Pg.2569]    [Pg.376]    [Pg.178]    [Pg.420]    [Pg.380]    [Pg.534]    [Pg.71]    [Pg.403]    [Pg.430]    [Pg.148]    [Pg.500]    [Pg.242]    [Pg.721]    [Pg.841]    [Pg.57]   


SEARCH



© 2024 chempedia.info