Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butenes vinylic oxidation

The results of the olefin oxidation catalyzed by 19, 57, and 59-62 are summarized in Tables VI-VIII. Table VI shows that linear terminal olefins are selectively oxidized to 2-ketones, whereas cyclic olefins (cyclohexene and norbomene) are selectively oxidized to epoxides. Cyclopentene shows exceptional behavior, it is oxidized exclusively to cyclopentanone without any production of epoxypentane. This exception would be brought about by the more restrained and planar pen-tene ring, compared with other larger cyclic nonplanar olefins in Table VI, but the exact reason is not yet known. Linear inner olefin, 2-octene, is oxidized to both 2- and 3-octanones. 2-Methyl-2-butene is oxidized to 3-methyl-2-butanone, while ethyl vinyl ether is oxidized to acetaldehyde and ethyl alcohol. These products were identified by NMR, but could not be quantitatively determined because of the existence of overlapping small peaks in the GC chart. The last reaction corresponds to oxidative hydrolysis of ethyl vinyl ether. Those olefins having bulky (a-methylstyrene, j8-methylstyrene, and allylbenzene) or electon-withdrawing substituents (1-bromo-l-propene, 1-chloro-l-pro-pene, fumalonitrile, acrylonitrile, and methylacrylate) are not oxidized. [Pg.410]

While alcohol oxidations have been the most common metal promoted reactions involving molecular oxygen, a number of other metal catalyzed oxidations of potential synthetic interest have been reported. Supported palladium catalysts are comparable to many soluble palladium catalysts in promoting the selective oxidations of alkenes and aromatics. 2-Butene was oxidized primarily to crotonic acid over Pd/C in water but methyl vinyl ketone and crotonaldehyde were also formed in significant amounts. When this oxidation was run in acetic acid the allyl acetates were the major products, particularly when a Pd/Al203 catalyst... [Pg.567]

Oxidative rearrangement takes place in the oxidation of the 1-vinyl-l-cyclo-butanol 31, yielding the cyclopentenone derivative 32[84], Ring contraction to cyclopropyl methyl ketone (34) is observed by the oxidation of 1-methylcyclo-butene (33)[85], and ring expansion to cyclopentanone takes place by the reaction of the methylenecyclobutane 35. [86,87]... [Pg.27]

This oxidation process for olefins has been exploited commercially principally for the production of acetaldehyde, but the reaction can also be apphed to the production of acetone from propylene and methyl ethyl ketone [78-93-3] from butenes (87,88). Careflil control of the potential of the catalyst with the oxygen stream in the regenerator minimises the formation of chloroketones (94). Vinyl acetate can also be produced commercially by a variation of this reaction (96,97). [Pg.52]

Pd2+ salts are useful reagents for oxidation reactions of olefins. Formation of acetaldehyde from ethylene is the typical example. Another reaction is the formation of vinyl acetate by the reaction of ethylene with acetic acid (16, 17). The reaction of acetic acid with butadiene in the presence of PdCl2 and disodium hydrogen phosphate to give butadienyl acetate was briefly reported by Stem and Spector (110). However, 1-acetoxy-2-butene (49) and 3-acetoxy-l-butene (50) were obtained by Ishii and co-workers (111) by simple 1,2- and 1,4-additions using PdCl2/CuCl2 in acetic acid-water (9 1). [Pg.181]

It was found that 2-propenyloxymagnesium bromide reacts much more readily with nitrile oxides than other known dipolarophiles of electron-deficient, electron-rich, and strained types, including 3-buten-2-one, ethyl vinyl ether, and norbomene, respectively (147). Therefore, this BrMg-alkoxide is highly effective in various nitrile oxide cycloaddition reactions, including those of nitrile oxide/Lewis acid complexes. [Pg.20]

Volume 75 concludes with six procedures for the preparation of valuable building blocks. The first, 6,7-DIHYDROCYCLOPENTA-l,3-DIOXIN-5(4H)-ONE, serves as an effective /3-keto vinyl cation equivalent when subjected to reductive and alkylative 1,3-carbonyl transpositions. 3-CYCLOPENTENE-l-CARBOXYLIC ACID, the second procedure in this series, is prepared via the reaction of dimethyl malonate and cis-l,4-dichloro-2-butene, followed by hydrolysis and decarboxylation. The use of tetrahaloarenes as diaryne equivalents for the potential construction of molecular belts, collars, and strips is demonstrated with the preparation of anti- and syn-l,4,5,8-TETRAHYDROANTHRACENE 1,4 5,8-DIEPOXIDES. Also of potential interest to the organic materials community is 8,8-DICYANOHEPTAFULVENE, prepared by the condensation of cycloheptatrienylium tetrafluoroborate with bromomalononitrile. The preparation of 2-PHENYL-l-PYRROLINE, an important heterocycle for the synthesis of a variety of alkaloids and pyrroloisoquinoline antidepressants, illustrates the utility of the inexpensive N-vinylpyrrolidin-2-one as an effective 3-aminopropyl carbanion equivalent. The final preparation in Volume 75, cis-4a(S), 8a(R)-PERHYDRO-6(2H)-ISOQUINOLINONES, il lustrates the conversion of quinine via oxidative degradation to meroquinene esters that are subsequently cyclized to N-acylated cis-perhydroisoquinolones and as such represent attractive building blocks now readily available in the pool of chiral substrates. [Pg.140]

Ethyl tert-butvl ether. Ethylene dibromide, Ethyl ether, Ethvl sulfide. 2-Heptanone, Methanol, 2-Methyl-1,3-butadiene, 2-Methvl-2-butene. Methyl chloride, Methylene chloride, Methyl iodide. Methyl mercaptan, 2-Methylphenol, Methyl sulfide. Monuron. Nitromethane, 2-Nitropropane, A-Nitrosodimethylamine, 1-Octene, 2-Pentanone, Propylene oxide, Styrene, Thiram, Toluene, Vinyl chloride, o-Xylene, tn-Xylene Formaldehyde cyanohydrin, see Acetontrile,... [Pg.1530]

Of the many studies of the autoxidation of butenes, few (5,11) have emphasized methyl vinyl ketone and methyl vinyl carbinol as major products. In the cumene hydroperoxide-initiated oxidation of 1-butene at 105°C. with 60 atm. of air, Chernyak (5) reported an average hourly rate of production of these two products approximately equal to the combined rates of formation of hydroperoxide and epoxide. The reported rates for hydroperoxide plus vinyl ketone and alcohol indicate that 60% of the products occur by abstraction, in agreement with Van Sickle (17). [Pg.111]

The best-known gas hydrates are those of ethane, ethylene, propane, and isobulaue. Others include methane and I butene, most of the fluorocarbon refrigerant gases, nitrous oxide, acetylene, vinyl chloride, carbon dioxide, methyl and ethyl chloride, methyl and ethyl bromide, cyclopropane, hydrogen sulfide, methyl mercaptan, and sulfur dioxide. [Pg.706]

The in situ regeneration of Pd(II) from Pd(0) should not be counted as being an easy process, and the appropriate solvents, reaction conditions, and oxidants should be selected to carry out smooth catalytic reactions. In many cases, an efficient catalytic cycle is not easy to achieve, and stoichiometric reactions are tolerable only for the synthesis of rather expensive organic compounds in limited quantities. This is a serious limitation of synthetic applications of oxidation reactions involving Pd(II). However it should be pointed out that some Pd(II)-promoted reactions have been developed as commercial processes, in which supported Pd catalysts are used. For example, vinyl acetate, allyl acetate and 1,4-diacetoxy-2-butene are commercially produced by oxidative acetoxylation of ethylene, propylene and butadiene in gas or liquid phases using Pd supported on silica. It is likely that Pd(OAc)2 is generated on the surface of the catalyst by the oxidation of Pd with AcOH and 02, and reacts with alkenes. [Pg.419]

A cyanosulfine [242] and an oxosulfine [162] were trapped with 2,3-dimethyl-1,3-butadiene (Table 6, entries 2 and 3). Capozzi and his group have extended their phthalimido-sulfenyl chemistry to the synthesis of a-oxosulfines, and have observed a dichotomic behaviour towards cycloaddition. With 1,3-dienes, these sulfines act [243, 244] as dienophiles through their C=S bond (Table 6, entry 4) to afford dihydro-2H-thiapyran S-oxides. With alkenes (Table 7), such as 2,3-dimethyl-2-butene (entry 1) or vinyl-ethers (entry 2), they behave as dienes to give dihydro-1,4-oxathiin S-oxides [243-245]. [Pg.168]

Using split injection mode, inject 1 to 5 xL of the standards into the chromatograph. Determine the peak areas by electronic integration. Plot peak area against concentration for each analyte corrected for the blank to construct a standard curve. Determine the concentration of additives and byproducts by comparison to the standard curve. The sum of the concentrations of the impurities and stabilizers is less than 1.0%. The order of elution and approximate retention times, in minutes, are as follows methyl chloride 2.8 vinyl chloride 3.0 ethyl chloride 3.5 propylene oxide 4.1 2-methyl-2-butene 4.5 vinylidene chloride 4.6 dichloromethane 5.3 trans-1,2-dichloroclhylene 5.9 chloroform 8.7 cyclohexane 10.5 and carbon tetrachloride 12.0. [Pg.289]

A concise synthesis of highly substituted furans, pyrroles, butenolides, and 2-butene-4-lactam esters starts from alkynyl adducts of a Fischer carbene complex 21 (Scheme 27) < 1998JOC3164>. Incorporation of an aldehyde yields a reactive vinyl tungstencarbonyl complex 22 that can be oxidatively transformed to an ester group, furnishing the furan carboxylic ester 23. [Pg.513]

The liquid phase processes resembled Wacker-Hoechst s acetaldehyde process, i.e., acetic acid solutions of PdCl2 and CuCl2 are used as catalysts. The water produced from the oxidation of Cu(I) to Cu(II) (Figure 27) forms acetaldehyde in a secondary reaction with ethylene. The ratio of acetaldehyde to vinyl acetate can be regulated by changing the operating conditions. The reaction takes place at 110-130°C and 30-40 bar. The vinyl acetate selectivity reaches 93% (based on acetic acid). The net selectivity to acetaldehyde and vinyl acetate is about 83% (based on ethylene), the by-products being CO2, formic acid, oxalic acid, butene and chlorinated compounds. The reaction solution is very corrosive, so that titanium must be used for many plant components. After a few years of operation, in 1969-1970 both ICI and Celanese shut down their plants due to corrosion and economic problems. [Pg.70]

Further research (22-24) has shown that butene oxidation can produce many selective reaction products (furan, acetaldehyde, and methyl vinyl ketone), which are not detected during butane oxidation. It cannot be assumed that the oxidation of butane and of the unsaturated reactants proceed along the same pathway. The kinetics data must be viewed with this point in mind, although butane activation is widely accepted to be the rate-determining step. The intermediates are capable of desorbing from the surface (as observed in the TAP investigations), but they do not, indicating that the further reactions occur more readily than desorption. [Pg.195]


See other pages where Butenes vinylic oxidation is mentioned: [Pg.2826]    [Pg.98]    [Pg.276]    [Pg.70]    [Pg.60]    [Pg.938]    [Pg.1124]    [Pg.90]    [Pg.22]    [Pg.192]    [Pg.127]    [Pg.66]    [Pg.108]    [Pg.37]    [Pg.726]    [Pg.268]    [Pg.336]    [Pg.157]    [Pg.369]    [Pg.361]    [Pg.358]    [Pg.9]    [Pg.23]    [Pg.367]    [Pg.403]    [Pg.289]    [Pg.254]    [Pg.192]   
See also in sourсe #XX -- [ Pg.472 ]




SEARCH



1-Butene Oxide

2-butenal, oxidation

Oxidation 1-butene

Oxidative vinylation

Vinyl oxide

Vinylic oxidation

© 2024 chempedia.info