Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butenes, cross-metathesis reactions

Dimersol E is used to upgrade C2 + C3 fuel gas. Co-oligomerization of ethylene and propene leads to a gasoline stream very similar to the Dimersol G product. Mixed butenes are also obtained with Dimersol E (from ethylene dimerization). They can be used in paraffinic alkylation or to make propene through a subsequent cross-metathesis reaction with ethylene. [Pg.91]

The final stereochemistry of a metathesis reaction is controlled by the thermodynamics, as the reaction will continue as long as the catalyst is active and eventually equilibrium will be reached. For 1,2-substituted alkenes this means that there is a preference for the trans isomer the thermodynamic equilibrium at room temperature for cis and trans 2-butene leads to a ratio 1 3. For an RCM reaction in which small rings are made, clearly the result will be a cis product, but for cross metathesis, RCM for large rings, ROMP and ADMET both cis and trans double bonds can be made. The stereochemistry of the initially formed product is determined by the permanent ligands on the metal catalyst and the interactions between the substituents at the three carbon atoms in the metallacyclic intermediate. Cis reactants tend to produce more cis products and trans reactants tend to give relatively more trans products this is especially pronounced when one bulky substituent is present as in cis and trans 4-methyl-2-pentene [35], Since the transition states will resemble the metallacyclobutane intermediates we can use the interactions in the latter to explain these results. [Pg.349]

Metathesis is a versatile reaction that forms the basis for several important industrial processes, such as the Phillips triolefin process, which produces propene by cross-metathesis of 2-butene with ethene, and the Shell higher olefins process (SHOP), which involves a combination process that converts ethene to detergent-range olefins. Several interesting polymeric materials are commercially produced via the ROMP of different types of unsaturated cyclic monomers, including nor-bornene, cyclooctene, and dicyclopentadiene [1]. [Pg.563]

Cross-metathesis. Functionalization of terminal alkenes by the metathetic method using catalyst 1 has been well established. The reaction between styrene and vinylsilanes gives (o-silylstyrenes, between allylarenes and acrylonitrile leads to 4-aryl-2-butenonitriles. Alternatively, homo-metathesis of two allylarene molecules to give 1,4-diary 1-2-butene is first carried out and the cross-metathesis follows. Also of interest is the homo-metathesis of monosubstituted allenes to symmetrical allenes. ... [Pg.373]

When cross-metathesis was first discovered, propene enjoyed only limited use and the reaction was viewed as a potential source of ethylene. Once methods were developed for the preparation of stereoregular polypropylene, however, propene became more valuable and cross-metathesis of ethylene and 2-butene now serves as a source of propene. [Pg.631]

The only oxide that has been used for catalyzed olefin metathesis at 25°C is Re207/Al203 (in the middle of the 1960s by British Petroleum), but it suffered from a low number of active sites, side reactions caused by the acid support and deactivation of the catalyst. On die other hand, the silica-supported rhenium catalyst [(SiO)(Re(C-f-Bu)(=CH-f-Bu)(CH2-f-Bu)] catalyzes the metathesis of propene at 25°C with an initial rate of 0.25 mol/(mol Re x s). The formation of 3,3-dimethyl-butene and 4,4-dimethylpentene in a 3 1 ratio results from cross metathesis between propene and the neopentyl idene ligand, and die ratio of cross-metathesis products matches the relative stability of the metallacyclobutane intermediates. Cross metathesis of propene and isobutene and self-metathesis of methyl oleate can also... [Pg.479]

Mixed WOj/Al Oj/HY catalysts prepared by calcination of physically mixed WO3, Al Oj and HY zeolite showed unique behavior in the metathesis between ethene and 2-butene to produce propene [147]. Monomeric tetrahedrally coordinated surface tungstate species responsible for the metathesis activity were formed via the interaction with Bronsted acid sites of HY zeolite. Polytungstate clusters are supposed to be less active in the metathesis reaction. The best catalyst demonstrates the 2-butene conversion close to the thermodynamic equilibrium value ( 64%) at 453 K. The catalysts are bifunctional [148] they catalyze first isomerization of 1-butene to 2-butene and then cross-metathesis between 1-butene and 2-butene to produce propene and 2-pentene. 10%W03/Al203-70%HY exhibits the highest propene yield. [Pg.350]

For the Mo/H-Beta zeolites, the formation of the Al2(Mo04)3 phase and the decrease in the concentration of Brpnsted acid sites explains the low catalytic activity of Mo/H-Beta in metathesis of ethylene and 2-butylene to propylene [149]. A promoting effect of Mg was revealed in the Mo/H-Beta-Al203 catalyst for cross-metathesis of ethene and butene-2 to propene [150]. The stability is improved at the Mg content of l-2wt.% due to the elimination of weak acid sites and suppression of the side olefin oligomerization reaction. [Pg.350]

In order to avoid side reactions, particularly isomerization, alkaline ions can be added during the impregnation stage of catalyst preparation. By this method, 1-butene production can be greatly reduced during metathesis of propylene and thus avoid the synthesis of other olefins by cross disproportionation between the normal metathesis products and the isomerized products. [Pg.236]


See other pages where Butenes, cross-metathesis reactions is mentioned: [Pg.254]    [Pg.197]    [Pg.267]    [Pg.217]    [Pg.263]    [Pg.305]    [Pg.201]    [Pg.205]    [Pg.329]    [Pg.183]    [Pg.321]    [Pg.131]    [Pg.327]    [Pg.357]    [Pg.601]    [Pg.48]    [Pg.24]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Butene reactions

Cross metathesis

Cross-metathesis butenes

Metathesis reactions

Metathesis reactions reaction

© 2024 chempedia.info