Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Building blocks, characteristics

Because of its physical properties, polypyrrole has been cited as a unique building block for intelligent polymeric materials, ie, it has characteristics which make it capable of sensing, information processing, and response actuation (48). [Pg.359]

Certain polymers have come to be considered standard building blocks of the polyblends. For example, impact strength may be improved by using polycarbonate, ABS and polyurethanes. Heat resistance is improved by using polyphenylene oxide, polysulphone, PVC, polyester (PET and PBT) and acrylic. Barrier properties are improved by using plastics such as ethylene vinyl alchol (EVA). Some modem plastic alloys and their main characteristics are given in Table 1.2. [Pg.11]

A collection of the basic building block, a lamina, was bonded together to form a laminate in Chapter 4. The behavior restrictions were covered in the section on classical lamination theory. Special cases of laminates were discussed to learn about laminate characteristics and behavior. Predicted and measured laminate stiffnesses were favorably compared to give credence to classical lamination theory. Then, the strength of laminates was discussed and found to be reasonably predictable. Finally, interlaminar stresses were analyzed because of their apparent strong influence on laminate strength (and life). [Pg.332]

As a result, we could open the door to a new frontier in indole chemistry. Various 1-hydroxyindoles (4a), l-hydroxytryptophans(la), 1-hydroxytryptamines (lb), and their derivatives have been given birth for the first time. As predicted, 1-hydroxytryptophan and 1-hydroxytryptamine derivatives are found to undergo previously unknown nucleophilic substitution reactions. In addition, we have been uncovering many interesting reactivities characteristic of 1-hydroxyindole structures. From the synthetic point of view, useful building blocks for indole alkaloids, hither to inaccessible by the well-known electrophilic reactions in indole chemistry, have now become readily available. Many biologically interesting compounds have been prepared as well. [Pg.103]

The use of molecular biology methods, described in Section 5.3 seems to be especially worthwhile as it offers novel possibilities of optimization on process adjustment. Directed evolution leads to the formation of new biocatalysts with improved characteristics (selectivity, activity, stability, etc.). Incorporation ofnon-proteinogenic amino acids makes it possible to reach beyond the repertoire of building blocks used by nature. The prospect of bioconjugate preparation offers the possibility to form functional clusters of enzymes and to perform multiple synthetic steps in one pot. [Pg.116]

The first half of our story builds up to reactions, and we learn about the characteristics of molecules that help us understand reactions. We begin by looking at atoms, the building blocks of molecules, and what happens when they combine to form bonds. We focus on special bonds between certain atoms, and we see how the nature of bonds can affect the shape and stability of molecules. At this point, we need a vocabulary to start talking about molecules, so we learn how to draw and name molecules. We see how molecules move around in space, and we explore the relationships between similar types of molecules. At this point, we know the important characteristics of molecules, and we are ready to use our knowledge to explore reactions. [Pg.388]

The building blocks of all materials in any phase are atoms and molecules. Their arrangements and how they interact with one another define many properties of the material. The nanotechnology MBBs, because of their sizes of a few nanometers, impart to the nanostructures created from them new and possibly preferred properties and characteristics heretofore unavailable in conventional materials and devices. These nanosize building blocks are intermediate in size, lying between atoms and microscopic and macroscopic systems. These building blocks contain a hmited and countable number of atoms. They constitute the basis of our entry into new realms of bottom-up nanotechnology [97, 98]. [Pg.231]

There is significant interest in zinc sulfide, selenide, and oxide materials and while extensive discussion is not appropriate here, a number of novel complexes that have been developed for their deposition characteristics of these important semiconductors will be highlighted in the context of the ligand types. Zinc has also been used in supramolecular building blocks as a structural element, much as in zinc finger proteins. In these cases the lack of redox chemistry is... [Pg.1148]

The self-similar spectrum is not valid at short times, X < X0, where the details of chemical structure become important (glass transition, entanglements, etc.). The cross-over to the glass transition at short times is typical for all polymeric materials, for both liquids and solids. The critical gel is no exception in that respect. X0 could be used as a characteristic time in the CW spectrum since it somehow characterizes the molecular building block of the critical gel however, it has no direct relation to the LST. At times shorter than X0, the LST has no immediate effect on the rheology. Indirect effects might be seen as a shift in the glass transition, for instance, but these will not be studied here. [Pg.175]


See other pages where Building blocks, characteristics is mentioned: [Pg.162]    [Pg.31]    [Pg.137]    [Pg.259]    [Pg.311]    [Pg.360]    [Pg.23]    [Pg.134]    [Pg.130]    [Pg.55]    [Pg.88]    [Pg.238]    [Pg.897]    [Pg.606]    [Pg.86]    [Pg.333]    [Pg.145]    [Pg.119]    [Pg.233]    [Pg.76]    [Pg.79]    [Pg.56]    [Pg.391]    [Pg.921]    [Pg.40]    [Pg.1]    [Pg.966]    [Pg.128]    [Pg.31]    [Pg.161]    [Pg.190]    [Pg.203]    [Pg.247]    [Pg.124]    [Pg.474]    [Pg.528]    [Pg.36]    [Pg.177]    [Pg.339]    [Pg.43]   


SEARCH



Blocking characteristics

© 2024 chempedia.info