Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubble column reactor, typical

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

The catalyst deactivation studies described here were carried out in 300 cm.. gas-sparged, stirred autoclaves and in a nominal 10 ton (CH30H)/day pilot-plant, bubble-column reactor. The details of the design and operation of these reactor systems have been reported elsewhere [refs. 4,5]. AH of the present studies were carried out with a feed gas that is referred to as "CO-Rich Gas , with a molar composition of H2 35%, CO-51 %, C02-13% and N2 1%- Its stoichiometric ratio, defined as H2/(CO+1.5002), is 0.5. A typical stoichiometric ratio for the feed to a conventional methanol reactor Is about 2.6, well on the H2-rich side of 2.0, the ratio tor exact stoichiometric equivalence. The feed concentrations of known poisons such as hydrogen sulfide, carbonyl sulfide, chlorine compounds, iron carbonyl and nickel carbonyl were below the limits of detection, 50 ppb, 50 ppb, 10 ppb, 50 ppb and 50 ppb, respectively. [Pg.350]

This review paper is concentrated on problems in scaling-up multiphase catalytic fixed bed reactors such as trickle-bed or packed bubble column reactors, in which two fluid phases (gas and liquid) pass concurrently through a bed of solid (usually porous) catalyst particles. These types of reactors are widely used in chemical and petrochemical industry as well as in biotechnology and waste water treatment. Typical processes are the hydrodesulphurization of petroleum fractions, the butinediol syntheses in the Reppe process for synthetic rubber, the anthrachinon/hydrochinon process for H202 production, biochemical processes with fixed enzymes or the oxidative treatment of waste water under pressure. [Pg.748]

Figure 12.19 Typical particle trajectories within three different flow regions around a rising bubble in a slurry bubble column reactor [70]. (Source Luewisuthichat et al. [70]. Reproduced with permission of the Society of Chemical Engineers, Japan.)... Figure 12.19 Typical particle trajectories within three different flow regions around a rising bubble in a slurry bubble column reactor [70]. (Source Luewisuthichat et al. [70]. Reproduced with permission of the Society of Chemical Engineers, Japan.)...
In this chapter, we focus on our efforts to model dispersed multiphase flows in which a discrete phase (consisting of solid particles, gas bubbles, or liquid droplets) is moving through, or is moved by, a continuous Newtonian fluid phase. Such flows appear frequendy in process equipment in the chemical, metallurgical, pharmaceutical, and food industries. Examples include fluidized bed reactors, spouted bed reactors, pneumatic conveyors, bubble column reactors, slurry reactors, and spray driers. Figure 1 shows a schematic overview of typical dispersed multiphase systems. [Pg.138]

Figure 5.17 Comparison of performance of a typical laboratory column (LBC) with those of micro-reactor devices falling film micro reactor (FFMR) micro bubble column (MBC I and MBC II) [38]. Figure 5.17 Comparison of performance of a typical laboratory column (LBC) with those of micro-reactor devices falling film micro reactor (FFMR) micro bubble column (MBC I and MBC II) [38].
GL 1] [R 1] [R 3] [P le] The performance of a typical laboratory bubble column was tested and benchmarked against the micro reactors (Figure 5.17). Using acetonitrile as solvent, the conversion of the laboratory bubble column ranged from 6 to 34% at selectivities of 17-50% [3, 38]. This corresponds to yields of 2-8%. Hence the yields of the laboratory tool are lower than those of the micro reactors, mainly as a consequence of lower selectivities. [Pg.603]

Column reactors are the second most popular reactors in the fine chemistry sector. They are mainly dedicated reactors adjusted for a particular process although in many cases column reactors can easily be adapted for another process. Cocurrently operated bubble (possibly packed) columns with upflow of both phases and trickle-bed reactors with downflow are widely used. The diameter of column reactors varies from tens of centimetres to metres, while their height ranges from two metres up to twenty metres. Larger column reactors also have been designed and operated in bulk chemicals plants. The typical catalyst particle size ranges from 1.5 mm (in trickle-bed reactors) to 10 mm (in countercurrent columns) depending on the particular application. The temperature and pressure are limited only by the material of construction and corrosivity of the reaction mixture. [Pg.267]

In a typical slurry bubble column operation, the liquid velocity is one order of magnitude lower than the one of gas, and in general, is very low. This mode of operation can be approximated by a semibatch operation. The semibatch operation is frequently used and is the case where the liquid and the catalyst comprise a stationary phase (sluny) in the reactor. In this case, the material balance, eq. (3.122) is used along with the overall rate based on the bulk gas-phase concentration (see Section 3.4.6). In the following, the semibatch operation is presented. [Pg.106]

Bubble columns and various modifications such as airlift reactors, impinging-jet-reactors, downflow bubble columns are frequently used in lab-scale ozonation experiments. Moderate /qa-values in the range of 0.005-0.01 s l can be achieved in simple bubble columns (Martin et al. 1994 Table 2-4 ). Due to the ease of operation they are mostly operated in a cocurrent mode. Countercurrent mode of operation, up-flow gas and down-flow liquid, has seldom been reported for lab-scale studies, but can easily be achieved by means of applying an internal recycle-flow of the liquid, pumping it from the bottom to the top of the reactor. The advantage is an increased level of the dissolved ozone concentration cL in the reactor (effluent), which is especially important in the case of low contaminant concentrations (c(M)) and/or low reaction rate constants, i. e. typical drinking water applications... [Pg.61]

The alkylated anthraquinone process accounts for over 95% of the world production of H202, mainly because the it operates under mild conditions and direct contact of 02 and H2 is avoided. In this process, 2-alkylanthraquinone (the alkyl group is typically an ethyl, terf-butyl or amyl group) is dissolved in a mixture of a non-polar solvent (C9-Cn alkylbenzene) and a polar solvent [Trioctyl phosphate (TOP), or tetrabutyl urea (TBU) or diisobutyl carbinol (DIBC)] and then hydrogenated over a precious metal (Pd or Ni) catalyst in a three-phase reactor (trickle bed or slurry bubble column) under mild reaction conditions (<5bar, <80 °C) to generate 2-alkylanthrahydroquinone [1-3, 5], The latter is then auto-oxidized with air in a... [Pg.253]

Usually, the typology of batch reactors also includes the semi-batch gas-liquid reactors, in which a gaseous phase is fed continuously in order to provide one of the reactants. A typical example is given by the reactors used both in different oxidative industrial processes and in the active sludge processes for the treatment of wastewater. It is possible to distinguish between the bubble columns (Fig. 7.1(c)), in which the gas rises undisturbed in the liquid phase, and the bubble stirred reactor, in which a mechanical mixer is added. Finally, the slurry reactors can be considered, in which the liquid phase contains a finely dispersed solid phase as well, which can act as a reactant or as a heterogeneous catalyst these reactors assume in general the features of Fig. 7.1(d). [Pg.161]

The bubble column is a typical gas-liquid heterogeneous reactor with the design also applicable to liquid-liquid systems. The bubbles rise through the liquid in plug flow. The liquid is well mixed by the bubbling gas and seldom follows plug flow assumptions. [Pg.476]

Wen and Fan [6] have provided a comprehensive listing of various tracers and experimental techniques for determining the RTD in flow systems. Recent studies [10,11,12] have been performed employing an impulse tracer to determine the RTD in bubble columns and an oscillatory flow electrochemical reactor. The author [13,14] has employed both step-change and an impulse to determine the RTD of nozzle type reactors analysis of the RTD involves an atomic absorption spectrophotometer (AAS), a cine-projector, and a chart recorder. Figures 8-7 and 8-8 show the nozzle-type reactors and the AAS, respectively. Figure 8-9 gives a typical response curve from the AAS. [Pg.680]

The effects of diffusional restrictions on the activity and selectivity of FT synthesis processes have been widely studied (32,52,56-60). Intrapellet diffusion limitations are common in packed-bed reactors because heat transfer and pressure-drop considerations require the use of relatively large particles. Bubble columns typically use much smaller pellets, and FT synthesis rates and selectivity are more likely to be influenced by the rate of mass transfer across the gas-liquid interface as a gas bubble traverses the reactor (59,61,62). [Pg.229]


See other pages where Bubble column reactor, typical is mentioned: [Pg.265]    [Pg.620]    [Pg.62]    [Pg.218]    [Pg.53]    [Pg.417]    [Pg.896]    [Pg.223]    [Pg.333]    [Pg.356]    [Pg.1663]    [Pg.2143]    [Pg.3154]    [Pg.484]    [Pg.1659]    [Pg.2129]    [Pg.75]    [Pg.230]    [Pg.236]    [Pg.134]    [Pg.469]    [Pg.217]    [Pg.274]    [Pg.235]    [Pg.522]    [Pg.75]    [Pg.110]    [Pg.140]    [Pg.9]    [Pg.50]    [Pg.26]    [Pg.69]    [Pg.49]   


SEARCH



Bubble columns

Bubble-column reactor

Column reactor

© 2024 chempedia.info