Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted acidity molecules

Lateral interactions between the adsorbed molecules can affect dramatically the strength of surface sites. Coadsorption of weak acids with basic test molecules reveal the effect of induced Bronsted acidity, when in the presence of SO, or NO, protonation of such bases as NH, pyridine or 2,6-dimethylpyridine occurs on silanol groups that never manifest any Bronsted acidity. This suggests explanation of promotive action of gaseous acids in the reactions catalyzed by Bronsted sites. Just the same, presence of adsorbed bases leads to the increase of surface basicity, which can be detected by adsorption of CHF. ... [Pg.431]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

In this reaction, the C atom of C02, the Lewis acid, accepts an electron pair from the O atom of a water molecule, the Lewis base, and a proton migrates from an H20 oxygen atom to a C02 oxygen atom. The product, an H2C03 molecule, is a Bronsted acid. [Pg.519]

An important implication of the Bronsted definitions of acids and bases is that the same substance may be able to function as both an acid and a base. For example, we have seen that a water molecule accepts a proton from an acid molecule (such as HC1 or HCN) to form an H30+ ion. So water is a base. I lowever, a water molecule can donate a proton to a base (such as O2- or NH3) and become an OH ion. So water is also an acid. We describe water as amphiprotic, meaning that an H20 molecule can act both as a proton donor and as a proton acceptor. [Pg.520]

Because water is amphiprotic—because it is both a Bronsted acid and a Bronsted base—proton transfer between water molecules occurs even in pure water, with one molecule acting as a proton donor and a neighboring molecule acting as a base ... [Pg.521]

FIGURE 10.19 In water, Al3+ cations are hydrated by water molecules that can act as Bronsted acids. Although, for clarity, only four water molecules are shown here, a metal cation typically has six H20 molecules attached to it. [Pg.540]

Mond process The purification of nickel by the formation and decomposition of nickel carbonyl, monomer A small molecule from which a polymer is formed. Examples CH2=CH2 for polyethylene NH2(CH2)6NH2 for nylon, monoprotic acid A Bronsted acid with one acidic hydrogen atom. Example CH COOI I. monosaccharide An individual unit from which carbohydrates are considered to be composed. Example C6H(206, glucose, multiple bond A double or triple bond between two atoms. [Pg.958]

B Boric acid acts as a Lewis acid. The boron atom in B(OH)3 has an incomplete octet and forms a bond by accepting a lone pair of electrons from a water molecule, which is acting as a Lewis base. The complex formed is a weak Bronsted acid in which an acidic proton can be lost from the H20 molecule in the complex. [Pg.979]

In the gas phase all sulfane molecules are relatively strong Bronsted acids. Their acidity is defined by the enthalpy or, alternatively, by the Gibbs energy of the following deprotonation reaction ... [Pg.119]

Cations at the surface possess Lewis acidity, i.e. they behave as electron acceptors. The oxygen ions behave as proton acceptors and are thus Bronsted bases. This has consequences for adsorption, as we will see. According to Bronsted s concept of basicity, species capable of accepting a proton are called a base, while a Bronsted acid is a proton donor. In Lewis concept, every species that can accept an electron is an acid, while electron donors, such as molecules possessing electron lone pairs, are bases. Hence a Lewis base is in practice equivalent to a Bronsted base. However, the concepts of acidity are markedly different. [Pg.175]

In the case of the rhenium aqua-ion [Re(OH2)3(CO)3]+ (33b) the question has been posed whether complex-anion can be considered to be a Bronsted acid. Titrations with hydroxide in water yielded a pKa value of 7.55 which is exceptionally low for a +1 cation. After the deprotonation of one coordinated water molecule, polymer formation over (/r-OH) bridges was initiated and the two compounds [Re3(/T3-OH)(/T-OH)3(CO)9r (35) and [Re2(/i-OH)3(CO)6] were (36) isolated and structurally characterized (Scheme 6). [Pg.164]

The formation of heavy carbonaceous compounds in 5A calcium exchanged zeolites depends on the calcium content. These zeolites are able to protonated ammonia molecules in ammonium ions. This Bronsted acidity results from the presence of CaOH+ species which are formed by water dissociation on Ca2+ ions and have an IR signature at 3515 cm"1. [Pg.108]

The aluminum is incorporated in a tetrahedral way into the mesoporous structure, given place to Bronsted acidic sites which are corroborated by FTIR using pyridine as probe molecule. The presence of aluminum reduces the quantity of amorphous carbon produced in the synthesis of carbon nanotubes which does not happen for mesoporous silica impregnated only with iron. It was observed a decrease in thermal stability of MWCNTs due to the presence of more metal particles which help to their earlier oxidation process. [Pg.209]

DPB as well as other DPP molecules (t-stilbene, diphenyl-hexatriene) with relatively low ionization potential (7.4-7.8 eV) and low vapor pressure was successfully incorporated in the straight channel of acidic ZSM-5 zeolite. DPP lies in the intersection of straight channel and zigzag channel in the vicinity of proton in close proximity of Al framework atom. The mere exposure of DPP powder to Bronsted acidic ZSM-5 crystallites under dry and inert atmosphere induced a sequence of reactions that takes place during more than 1 year to reach a stable system which is characterized by the molecule in its neutral form adsorbed in the channel zeolite. Spontaneous ionization that is first observed is followed by the radical cation recombination according to two paths. The characterization of this phenomenon shows that the ejected electron is localized near the Al framework atom. The reversibility of the spontaneous ionization is highlighted by the recombination of the radical cation or the electron-hole pair. The availability of the ejected electron shows that ionization does not proceed as a simple oxidation but stands for a real charge separated state. [Pg.380]

It will be seen from these examples that the process of self-ionization in a protonic solvent involves the transfer of a proton from one solvent molecule to another. Thus, the solvent is acting simultaneously as a Lowry-Bronsted acid and as a base. [Pg.32]

Adsorption of water is thought to occur mainly at steps and defects and is very common on polycrystalline surfaces, and hence the metal oxides are frequently covered with hydroxyl groups. On prolonged exposure, hydroxide formation may proceed into the bulk of the solid in certain cases as with very basic oxides such as BaO. The adsorption of water may either be a dissociative or nondissociative process and has been investigated on surfaces such as MgO, CaO, TiOz, and SrTi03.16 These studies illustrate the fact that water molecules react dissociatively with defect sites at very low water-vapor pressures (< 10 9 torr) and then with terrace sites at water-vapor pressures that exceed a threshold pressure. Hydroxyl groups will be further discussed in the context of Bronsted acids and Lewis bases. [Pg.48]

Two types of probe molecules have been used for the detection of Lewis and Bronsted acid sites. The first involves the adsorption of relatively strong basic molecules such as pyridine, ammonia, quinoline, and diazines. The second kind involves the adsorption of weak base molecules such as CO, NO, acetone, acetonitrile, and olefins. The pioneering works of Parry27 and Hughes and... [Pg.50]

Describe the spectroscopic methods for detection of Lewis acidity/basicity and Bronsted acid-ity/basicity of metal oxides, and explain why pyridine (in spite of its toxicity and low volatility) is a popular choice as an adsorbate molecule. [Pg.62]

Several reaction pathways for the cracking reaction are discussed in the literature. The commonly accepted mechanisms involve carbocations as intermediates. Reactions probably occur in catalytic cracking are visualized in Figure 4.14 [17,18], In a first step, carbocations are formed by interaction with acid sites in the zeolite. Carbenium ions may form by interaction of a paraffin molecule with a Lewis acid site abstracting a hydride ion from the alkane molecule (1), while carbo-nium ions form by direct protonation of paraffin molecules on Bronsted acid sites (2). A carbonium ion then either may eliminate a H2 molecule (3) or it cracks, releases a short-chain alkane and remains as a carbenium ion (4). The carbenium ion then gets either deprotonated and released as an olefin (5,9) or it isomerizes via a hydride (6) or methyl shift (7) to form more stable isomers. A hydride transfer from a second alkane molecule may then result in a branched alkane chain (8). The... [Pg.111]

The product is exclusively carbon monoxide, and good turnover numbers are found in preparative-scale electrolysis. Analysis of the reaction orders in CO2 and AH suggests the mechanism depicted in Scheme 4.6. After generation of the iron(O) complex, the first step in the catalytic reaction is the formation of an adduct with one molecule of CO2. Only one form of the resulting complex is shown in the scheme. Other forms may result from the attack of CO2 on the porphyrin, since all the electronic density is not necessarily concentrated on the iron atom [an iron(I) anion radical and an iron(II) di-anion mesomeric forms may mix to some extent with the form shown in the scheme, in which all the electronic density is located on iron]. Addition of a weak Bronsted acid stabilizes the iron(II) carbene-like structure of the adduct, which then produces the carbon monoxide complex after elimination of a water molecule. The formation of carbon monoxide, which is the only electrolysis product, also appears in the cyclic voltammogram. The anodic peak 2a, corresponding to the reoxidation of iron(II) into iron(III) is indeed shifted toward a more negative value, 2a, as it is when CO is added to the solution. [Pg.262]

Hydrolysis reactions occur by nucleophilic attack at a carbon single bond, involving either the water molecule directly or the hydronium or hydroxyl ion. The most favorable conditions for hydrolysis, e.g. acidic or alkaline solutions, depend on the nature of the bond which is to be cleaved. Mineral surfaces that have Bronsted acidity have been shown to catalyze hydrolysis reactions. Examples of hydrolysis reactions which may be catalyzed by the surfaces of minerals in soils include peptide bond formation by amino acids which are adsorbed on clay mineral surfaces and the degradation of pesticides (see Chapter 22). [Pg.15]

Most of the work with alumina was done, however, attempting to elucidate the nature of the catalytically active sites in dehydrated alumina. The catalytic activity of alumina is enhanced by treatment with hydrofluoric acid. Oblad et al. (319) measured a higher activity in the isomerization of 1- and 2-pentene. Webb (339) studied the effect of HF treatment on ammonia adsorption by alumina. There was no difference in the capacity. However, the ammonia was more easily desorbed at a given temperature from the untreated sample. Apparently, the adsorption sites grew more strongly acidic by the treatment. No NH4+ ions, only NHj molecules were detected by their infrared spectra, indicating that the ammonia was bound by Lewis acids rather than Bronsted acids. [Pg.256]

Hirschler and Hudson (36/6), however, favor the opinion that Bronsted sites are exclusively responsible for the activity of silica-alumina. In studying the adsorption of perylene and of triphenylmethane, they concluded that carbonium ions are not formed by a hydride abstraction mechanism as claimed by Leftin (362). Instead, triphenylmethane is oxidized by chemisorbed oxygen to triphenylcarbinol in a photo-catalyzed reaction, followed by reaction with a Bronsted acid giving water and a triphenylmethyl carbonium ion. After treatment with anhydrous ammonia, the organic compound was recovered by extraction as triphenylcarbinol. About thirteen molecules of ammonia per assumed Lewis site were required to poison the chemisorption of trityl ions. The authors explain the selective inhibition of certain catalyzed reactions by alkali by assuming that only certain of the acidic protons will ion-exchange with alkali ions. [Pg.260]


See other pages where Bronsted acidity molecules is mentioned: [Pg.2782]    [Pg.709]    [Pg.123]    [Pg.228]    [Pg.102]    [Pg.89]    [Pg.97]    [Pg.747]    [Pg.946]    [Pg.99]    [Pg.79]    [Pg.156]    [Pg.252]    [Pg.283]    [Pg.314]    [Pg.109]    [Pg.273]    [Pg.278]    [Pg.230]    [Pg.259]    [Pg.50]    [Pg.51]    [Pg.134]    [Pg.142]    [Pg.32]    [Pg.386]    [Pg.197]    [Pg.260]   


SEARCH



Bronsted acid

Bronsted acidity

© 2024 chempedia.info