Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted acid formation

Fig. 3. Mechanism of Bronsted acid formation by photolysis of a diphenyliodonium salt (X BF4, SbF etc.)... Fig. 3. Mechanism of Bronsted acid formation by photolysis of a diphenyliodonium salt (X BF4, SbF etc.)...
Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

A proton (H+) is an electron pair acceptor. It is therefore a Lewis acid because it can attach to ( accept") a lone pair of electrons on a Lewis base. In other words, a Bronsted acid is a supplier of one particular Lewis acid, a proton. The Lewis theory is more general than the Bronsted-Lowry theory. For instance, metal atoms and ions can act as Lewis acids, as in the formation of Ni(CO)4 from nickel atoms (the Lewis acid) and carbon monoxide (the Lewis base), but they are not Bronsted acids. Likewise, a Bronsted base is a special kind of Lewis base, one that can use a lone pair of electrons to form a coordinate covalent bond to a proton. For instance, an oxide ion is a Lewis base. It forms a coordinate covalent bond to a proton, a Lewis acid, by supplying both the electrons for the bond ... [Pg.518]

Mond process The purification of nickel by the formation and decomposition of nickel carbonyl, monomer A small molecule from which a polymer is formed. Examples CH2=CH2 for polyethylene NH2(CH2)6NH2 for nylon, monoprotic acid A Bronsted acid with one acidic hydrogen atom. Example CH COOI I. monosaccharide An individual unit from which carbohydrates are considered to be composed. Example C6H(206, glucose, multiple bond A double or triple bond between two atoms. [Pg.958]

The thermal decompositions are catalyzed by Bronsted and Lewis acids [68]. In general, when M is electron poor and Lewis acidic, the thermal decompositions occur efficiently and at low temperatures (typically between 100 and 200 °C, but sometimes at lower temperature). The addition of a catalytic amount of a Lewis or Bronsted acid (i.e., AICI3 or HCl) has been observed to accelerate the ehmination of isobutylene and the formation of three-dimensional network structures [64,124-126]. Pioneering studies on pyrolyses of various metal alkoxides by Bradley and others have also shown that alkene eliminations represent a primary decomposition pathway [104]. [Pg.90]

Chiral Bronsted acid co-catalysts do not promote formation of optically enriched products in analogous couplings to pyruvates, although increased rate and conversion in response to the Bronsted acid co-catalyst is unmistakably apparent. For pyruvates, protonation likely occurs subsequent to the C-C... [Pg.100]

In the case of the rhenium aqua-ion [Re(OH2)3(CO)3]+ (33b) the question has been posed whether complex-anion can be considered to be a Bronsted acid. Titrations with hydroxide in water yielded a pKa value of 7.55 which is exceptionally low for a +1 cation. After the deprotonation of one coordinated water molecule, polymer formation over (/r-OH) bridges was initiated and the two compounds [Re3(/T3-OH)(/T-OH)3(CO)9r (35) and [Re2(/i-OH)3(CO)6] were (36) isolated and structurally characterized (Scheme 6). [Pg.164]

Recrystallization procedure applied to the amorphous aluminosilicates of different chemical composition resulted in the formation of the dispersed zeolitic domains of the FAU and BEA structure in porous matrices. The structural transformation into the composite material was proved with TEM, XRD and 27Al and 29Si MAS NMR spectroscopies. The IR data revealed that strong Bronsted acid centers were main active sites generated in the composite materials, irrespectively of the Al content. [Pg.96]

The formation of heavy carbonaceous compounds in 5A calcium exchanged zeolites depends on the calcium content. These zeolites are able to protonated ammonia molecules in ammonium ions. This Bronsted acidity results from the presence of CaOH+ species which are formed by water dissociation on Ca2+ ions and have an IR signature at 3515 cm"1. [Pg.108]

The tetrahedral Al incorporated in mesoporous silica reduces considerably the quantity of amorphous carbon, increasing the MWCNTs selectivity, due to the formation of strong Bronsted acidic sites, which allow a better dispersion of iron metallic clusters. The Fe/Al-MCM41 (10) showed the best results in CNT purity and yield. This indicates that the aluminum content and its tetrahedral structural incorporation play an important role in the CNT syntheses. [Pg.212]

Cr-ZSM-5 catalysts prepared by solid-state reaction from different chromium precursors (acetate, chloride, nitrate, sulphate and ammonium dichromate) were studied in the selective ammoxidation of ethylene to acetonitrile. Cr-ZSM-5 catalysts were characterized by chemical analysis, X-ray powder diffraction, FTIR (1500-400 cm 1), N2 physisorption (BET), 27A1 MAS NMR, UV-Visible spectroscopy, NH3-TPD and H2-TPR. For all samples, UV-Visible spectroscopy and H2-TPR results confirmed that both Cr(VI) ions and Cr(III) oxide coexist. TPD of ammonia showed that from the chromium incorporation, it results strong Lewis acid sites formation at the detriment of the initial Bronsted acid sites. The catalyst issued from chromium chloride showed higher activity and selectivity toward acetonitrile. This activity can be assigned to the nature of chromium species formed using this precursor. In general, C r6+ species seem to play a key role in the ammoxidation reaction but Cr203 oxide enhances the deep oxidation. [Pg.345]

Adsorption of water is thought to occur mainly at steps and defects and is very common on polycrystalline surfaces, and hence the metal oxides are frequently covered with hydroxyl groups. On prolonged exposure, hydroxide formation may proceed into the bulk of the solid in certain cases as with very basic oxides such as BaO. The adsorption of water may either be a dissociative or nondissociative process and has been investigated on surfaces such as MgO, CaO, TiOz, and SrTi03.16 These studies illustrate the fact that water molecules react dissociatively with defect sites at very low water-vapor pressures (< 10 9 torr) and then with terrace sites at water-vapor pressures that exceed a threshold pressure. Hydroxyl groups will be further discussed in the context of Bronsted acids and Lewis bases. [Pg.48]

The product is exclusively carbon monoxide, and good turnover numbers are found in preparative-scale electrolysis. Analysis of the reaction orders in CO2 and AH suggests the mechanism depicted in Scheme 4.6. After generation of the iron(O) complex, the first step in the catalytic reaction is the formation of an adduct with one molecule of CO2. Only one form of the resulting complex is shown in the scheme. Other forms may result from the attack of CO2 on the porphyrin, since all the electronic density is not necessarily concentrated on the iron atom [an iron(I) anion radical and an iron(II) di-anion mesomeric forms may mix to some extent with the form shown in the scheme, in which all the electronic density is located on iron]. Addition of a weak Bronsted acid stabilizes the iron(II) carbene-like structure of the adduct, which then produces the carbon monoxide complex after elimination of a water molecule. The formation of carbon monoxide, which is the only electrolysis product, also appears in the cyclic voltammogram. The anodic peak 2a, corresponding to the reoxidation of iron(II) into iron(III) is indeed shifted toward a more negative value, 2a, as it is when CO is added to the solution. [Pg.262]

On treating diisobutene with acetic anhydride and anhydrous zinc chloride, A. C. Byrns and T. F. Doumani had isolated in 1943 a crystalline compound to which they had ascribed the structure of a zinc complex with a 1,3-diketone 40 the correct pyrylium chlorozincate structure was established by A. T. Balaban et al.41 in 1961, after extended investigation on the formation of pyrylium salts by alkene diacylation.42 This formation again had remained undetected for many decades during which alkenes had been acylated but only the water-insoluble monoacylation products had been investigated, whereas the water-soluble pyrylium salts went into the sink with the Lewis or Bronsted acid catalysts that had been used in the acylation. [Pg.10]

Bronsted acid sites) or metal atoms with unsatisfied coordination (Lewis acid sites) react with water to form surface charge (13). Isomorphic substitution in the interlayer region of layered silicates results in a negative surface charge. In each case chemical "exchange" of ions between phases results in the formation of surface charge and the development of an electrical potential. [Pg.5]

Hydrolysis reactions occur by nucleophilic attack at a carbon single bond, involving either the water molecule directly or the hydronium or hydroxyl ion. The most favorable conditions for hydrolysis, e.g. acidic or alkaline solutions, depend on the nature of the bond which is to be cleaved. Mineral surfaces that have Bronsted acidity have been shown to catalyze hydrolysis reactions. Examples of hydrolysis reactions which may be catalyzed by the surfaces of minerals in soils include peptide bond formation by amino acids which are adsorbed on clay mineral surfaces and the degradation of pesticides (see Chapter 22). [Pg.15]

Thus, Lewis s definition is a much broader definition that includes coordination compound formation as acid-base reactions, besides Arrhenius and Lowry-Bronsted acids and bases. Examples ... [Pg.97]


See other pages where Bronsted acid formation is mentioned: [Pg.67]    [Pg.67]    [Pg.320]    [Pg.40]    [Pg.257]    [Pg.150]    [Pg.498]    [Pg.153]    [Pg.156]    [Pg.10]    [Pg.101]    [Pg.283]    [Pg.130]    [Pg.190]    [Pg.483]    [Pg.321]    [Pg.321]    [Pg.323]    [Pg.348]    [Pg.32]    [Pg.49]    [Pg.50]    [Pg.53]    [Pg.117]    [Pg.35]    [Pg.260]    [Pg.84]    [Pg.423]    [Pg.426]    [Pg.448]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Bronsted acid

Bronsted acidity

Bronsted formation

© 2024 chempedia.info