Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromination stereoselective

A classical reaction leading to 1,4-difunctional compounds is the nucleophilic substitution of the bromine of cf-bromo carbonyl compounds (a -synthons) with enolate type anions (d -synthons). Regio- and stereoselectivities, which can be achieved by an appropiate choice of the enol component, are similar to those described in the previous section. Just one example of a highly functionalized product (W.L. Meyer, 1963) is given. [Pg.63]

The stereospedfic and regioselective hydrobromination of alkynes with chlorobis(T -cyclopentadienyl)hydrozirconium and NBS produces ( )-vinylic bromides in good yields. The bromine atom usually adds regioselectively to the carbon atom that bears the smaller substituent and stereoselectively trans to the larger substituent (D.W. Hart, 1975 M. Nakatsuka,... [Pg.132]

Furthermore, treatment of the aminopalladation product with bromine affords aziridines[176]. The aziridine 160 was obtained stereoselectively from methylamine and 1-decene in 43% yield. The aminopalladation of PdCl2 complexes of ethylene, propylene, and 1-butene with diethylamine affords the unstable ir-alkylpalladium complex 161, which is converted into the stable chelated acylpalladium complex 162 by treatment with CO[177],... [Pg.43]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

In the bromination of styrene, a po-+ plot is noticeably curved. If the extremes of the curves are taken to represent straight lines, the curve can be resolved into two Hammett relationships with p = —2.8 for electron-attracting substituents and p = —4.4 for electron-releasing substituents. When the corresponding -methylstyrenes are examined, a similarly curved ap plot is obtained. Furthermore, the stereospecificity of the reaction in the case of the -methylstyrenes varies with the aryl substituents. The reaction is a stereoespecific anti addition for strongly electron-attracting substituents but becomes only weakly stereoselective for electron-releasing substituents, e.g., 63% anti, 37% syn, forp-methoxy. Discuss the possible mechanistic basis for the Hammett plot curvature and its relationship to the stereochemical results. [Pg.403]

The stereoselectivity of the radical addition can be explained in terms of a bridged structure similar to that involved in discussion of ionic bromination of alkenes ... [Pg.709]

The properties of chlorine azide resemble those of bromine azide. Pon-sold has taken advantage of the stronger carbon-chlorine bond, i.e., the resistance to elimination, in the chloro azide adducts and thus synthesized several steroidal aziridines. 5a-Chloro-6 -azidocholestan-3 -ol (101) can be converted into 5, 6 -iminocholestan-3l -ol (102) in almost quantitative yield with lithium aluminum hydride. It is noteworthy that this aziridine cannot be synthesized by the more general mesyloxyazide route. Addition of chlorine azide to testosterone followed by acetylation gives both a cis- and a trans-2iddMct from which 4/S-chloro-17/S-hydroxy-5a-azidoandrostan-3-one acetate (104) is obtained by fractional crystallization. In this case, sodium borohydride is used for the stereoselective reduction of the 3-ketone... [Pg.25]

In related work fluorine reacts with iodine in fluorotnchloromethane, and the iodine lluonde thus fonned adds the elements of iodine and fluorine to olefins at -78 °C with full regio and stereoselectivity [67] Bromine-fluonnc on the other hand. [Pg.110]

Alkyl diethylphosphononuoroacetates have been used extensively in ol fi-nanon procedures [69], principally forming the ffJ-a-fluoro-a.P-unsaturated esters with very high stereoselectivity [70] (equation 61) (Table 22). Preparation of the ethyl diethylphosphonofluoroacetate from ethyl fluoroacetate has obviated the necessity to prepare ethyl bromofluoroacetate from bromine fluoride and ethyl diazoacetate [71],... [Pg.593]

Fieser et al. have already found that bromination of trans-stilbene with pyridinium hydrobromide perbromide in acetic acid gave exclusively meso-stilbene dibromide, and have further shown that the agent possesses far greater stereoselectivity than free bromine (ref. 26). Fournier et al. have reported the bromo-addition to double-bond of several alkenes by use of TBA Br3 (ref. 27). Moreover, Bethelot et al. described the bromo-addition to triple-bond of alkynes with TBA Br3 (ref. 28). [Pg.38]

Most of these results have been obtained in methanol but some of them can be extrapolated to other solvents, if the following solvent effects are considered. Bromine bridging has been shown to be hardly solvent-dependent.2 Therefore, the selectivities related to this feature of bromination intermediates do not significantly depend on the solvent. When the intermediates are carbocations, the stereoselectivity can vary (ref. 23) widely with the solvent (ref. 24), insofar as the conformational equilibrium of these cations is solvent-dependent. Nevertheless, this equilibration can be locked in a nucleophilic solvent when it nucleophilically assists the formation of the intermediate. Therefore, as exemplified in methylstyrene bromination, a carbocation can react 100 % stereoselectivity. [Pg.111]

Thus, this first example of stereoselective radical reaction, initiated with the system based on Fe(CO)5, shows opportunities and prospects of using the metal complex initiators for obtaining the stereomerically pure adducts of bromine-containing compounds to vinyl monomers with chiral substituents. [Pg.192]

The fate of aromatic bromine compounds such as brominated dibenzodioxins occurring on fly ash of municipal waste incinerators has been deduced from appropriate laboratory experiments. Stereoselective, first order ipso-substitution of bromine by chlorine is observed. [Pg.363]

These terms are best illustrated by examples. Thus, if maleic acid treated with bromine gives the dl pair of 2,3-dibromosuccinic acid while fumaric acid gives the meso isomer (this is the case), the reaction is stereospecific as well as stereoselective because two opposite isomers give two opposite isomers ... [Pg.167]

However, if both maleic and fumaric acid gave the dl pair or a mixture in which the dl pair predominated, the reaction would be stereoselective but not stereospecific. If more or less equal amounts of dl and meso forms were produced in each case, the reaction would be nonstereoselective. A consequence of these definitions is that if a reaction is carried out on a compound that has no stereoisomers, it cannot be stereospecific, but at most stereoselective. For example, addition of bromine to methylacetylene could (and does) result in preferential formation of trans-1,2-dibromopropene, but this can be only a stereoselective, not a stereospecific reaction. [Pg.167]

However, a number of examples have been found where addition of bromine is not stereospecifically anti. For example, the addition of Bf2 to cis- and trans-l-phenylpropenes in CCI4 was nonstereospecific." Furthermore, the stereospecificity of bromine addition to stilbene depends on the dielectric constant of the solvent. In solvents of low dielectric constant, the addition was 90-100% anti, but with an increase in dielectric constant, the reaction became less stereospecific, until, at a dielectric constant of 35, the addition was completely nonstereospecific.Likewise in the case of triple bonds, stereoselective anti addition was found in bromination of 3-hexyne, but both cis and trans products were obtained in bromination of phenylacetylene. These results indicate that a bromonium ion is not formed where the open cation can be stabilized in other ways (e.g., addition of Br+ to 1 -phenylpropene gives the ion PhC HCHBrCH3, which is a relatively stable benzylic cation) and that there is probably a spectrum of mechanisms between complete bromonium ion (2, no rotation) formation and completely open-cation (1, free rotation) formation, with partially bridged bromonium ions (3, restricted rotation) in between. We have previously seen cases (e.g., p. 415) where cations require more stabilization from outside sources as they become intrinsically less stable themselves. Further evidence for the open cation mechanism where aryl stabilization is present was reported in an isotope effect study of addition of Br2 to ArCH=CHCHAr (Ar = p-nitrophenyl, Ar = p-tolyl). The C isotope effect for one of the double bond carbons (the one closer to the NO2 group) was considerably larger than for the other one. ... [Pg.973]

Treatment of the vinylborane with bromine and base leads to vinyl bromides. The reaction occurs with net anti addition, and the stereoselectivity is explained on the basis of anti addition of bromine followed by a second anti elimination of bromide and boron. [Pg.352]

The indenobenzazepines 314, obtainable from the corresponding protoberberines (Sections V,F,2 and V,G,2), were converted to the spirobenzyliso-quinolinediones 315 in 76% yield through hydrolytic bond cleavage and recyclization by sequential treatment with 4 N hydrochloric acid, bromine in acetic acid, and triethylamine, via the indanediones (Scheme 58) (166). A one-step stereoselective rearrangement of an indenobenzazepine to a spirobenzylisoquinoline was developed by Blasko et ah (167). O-Methylfumarofine (316)... [Pg.187]

It is found in practice with (5), and with other simple acyclic alkenes, that the addition is almost completely stereoselective, i.e. 100% ANTI addition. This result also is incompatible with a one-step pathway, as the atoms in a bromine molecule are too close to each other to be able to add, simultaneously, ANTI. [Pg.180]

The possible formation of a delocalised benzyl type carbocation (16) results in much lower (70%) ANTI stereoselectivity than with trans 2-butene (5 =100% ANTI stereoselectivity, p. 180), where no such delocalisation is possible. It is also found that increasing the polarity, and ion-solvating ability, of the solvent also stabilises the carbocation, relative to the bromium ion, intermediate with consequent decrease in ANTI stereoselectivity. Thus addition of bromine to 1,2-diphenylethene (stilbene) was found to proceed 90-100% ANTI in solvents of low dielectric constant, but =50% ANTI only in a solvent with e = 35. [Pg.182]

This is borne out by the high degree of ANTI stereoselectivity that is observed in acyclic examples (cf. p. 254), when either or both the bromine atoms are attached to secondary or tertiary carbon atoms, e.g.(64) ... [Pg.264]

In any consideration of stereoselectivity in radical addition to acylic substrates, interpretation of the results is complicated by the knowledge that alkenes may be converted, at least in part, into their geometrical isomerides by traces of bromine (or of HBr, i.e. by Br, cf. p. 315). This may, however, be minimised by working at low temperatures, and by using a high concentration of HBr. Thus addition of liquid HBr at -80° to cis 2-bromobut-2-ene (67) was found to proceed with high TRANS stereoselectivity, and to yield (68) almost exclusively ... [Pg.318]

To account for this very high TRANS stereoselectivity, it has been suggested that addition proceeds via a cyclic bromonium radical (71), analogous to the cyclic bromonium cations involved in the polar addition of bromine to alkenes (p. 180) ... [Pg.318]

It is assumed that the reaction is initiated by a radical bromine abstraction to give 10-13, which after carbon monoxide insertion undergoes a rapid 5 -exo cycliza-tion onto the hydrazone moiety. The two diastereomeric hydrazinyl cyclopentanones 10-16 and 10-17 are formed with good yields, though with low stereoselectivity. [Pg.567]

The bromination of the optically pure alkadienephosphonic acids proceeds with similar stereoselectivity [55], while in the case of allenic alcohols complete racemi-zation of the product occurred (Scheme 16) [56],... [Pg.215]


See other pages where Bromination stereoselective is mentioned: [Pg.171]    [Pg.382]    [Pg.46]    [Pg.142]    [Pg.142]    [Pg.103]    [Pg.109]    [Pg.111]    [Pg.161]    [Pg.168]    [Pg.175]    [Pg.973]    [Pg.978]    [Pg.80]    [Pg.3]    [Pg.182]    [Pg.264]    [Pg.265]    [Pg.215]    [Pg.149]    [Pg.220]    [Pg.183]    [Pg.116]    [Pg.252]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Bromination stereoselectivity

Bromination stereoselectivity

Bromine addition with anti stereoselectivity

© 2024 chempedia.info