Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromide cuprous, reaction with aryl

Examples of the three mechanistic types are, respectively (a) hydrolysis of diazonium salts to phenols89 (b) reaction with azide ion to form aryl azides90 and (c) reaction with cuprous halides to form aryl chlorides or bromides.91 In the paragraphs that follow, these and other synthetically useful reactions of diazonium intermediates are considered. The reactions are organized on the basis of the group that is introduced, rather than on the mechanism involved. It will be seen that the reactions that are discussed fall into one of the three general mechanistic types. [Pg.1029]

Kotschy et al. also reported a palladium/charcoal-catalyzed Sono-gashira reaction in aqueous media. In the presence of Pd/C, Cul, PPI13, and z -Pr2NH base, terminal alkynes smoothly reacted with aryl bromides or chlorides, such as 2-pyridyl chloride, 4-methylphenyl bromide, and so on, to give the expected alkyne products in dimethyl-acetamide (DMA)-H20 solvent. Wang et al. reported an efficient cross-coupling of terminal alkynes with aromatic iodides or bromides in the presence of palladium/charcoal, potassium fluoride, cuprous iodide, and triph-enylphosphine in aqueous media (THF/H20, v/v, 3/1) at 60°C.35 The palladium powder is easily recovered and is effective for six consecutive runs with no significant loss of catalytic activity. [Pg.108]

Replacement of diazonium groups by halide is a valuable alternative to direct halogenation for preparation of aryl halides. Aryl bromides and chlorides are usually prepared by reaction of aryl diazonium salts with the appropriate Cu(I) salt, a process which is known as the Sandmeyer reaction. Under the classic conditions, the diazonium salt is added to a hot acidic solution of the cuprous halide.92 The Sandmeyer reaction is formulated as proceeding by an oxidative addition reaction of the diazonium ion with Cu(I) and halide transfer from the Cu(III) intermediate. [Pg.717]

The reaction with ammonia or amines, which undoubtedly proceeds by the SNAr mechanism, is catalyzed by copper8" and nickel105 salts, though these are normally used only with rather unreactive halides.106 This reaction, with phase transfer catalysis, has been used to synthesize triarylamines.107 Copper ion catalysts (especially cuprous oxide or iodide) also permit the Gabriel synthesis (0-58) to be applied to aromatic substrates. Aryl bromides or iodides are refluxed with potassium phthalimide and Cu 0 or Cul in dimethylacetamide to give N-aryl phthalimides, which can be hydrolyzed to primary aryl amines.108... [Pg.657]

Aryl chlorides and bromides are prepared by reaction of an arenedia zonium salt with the corresponding cuprous halide, CuX, a process called the Sandmeyer reaction. Aryl iodides can be prepared by direct reaction with Nal without using a cuprous salt, Yields generally fall in the range 60-80%,... [Pg.1000]

In the preparation of bromo compounds by the Sandmeyer reaction, the amine is generally diazotised in sulphuric acid solution (or in hydrobromic acid solution), and the resulting arylcuprous bromide in excess of hydrobromic acid the addition... [Pg.592]

Treatment of diazonium salts with cuprous, Cu(I), salts generates aryl halides. When 398 reacts with CuCl (cuprous chloride) or CuBr (cuprous bromide), the products are chlorobenzene or bromobenzene via what is probably a radical reaction.29l jhis conversion is known as the Sandmeyer reaction. 2 The use of copper powder rather than cuprous salts for this transformation is often called the Gattermann reaction. 93,292b,c Aryl iodides are also produced from diazonium salts by reaction with potassium iodide (KI) but the actual reactive species may be l3-.294,295 Treatment of aniline derivative 403 with sodium nitrite and HCl followed by treatment with KI, for example, gave a 89% yield of 404.Aryl nitriles are generated under Sandmeyer conditions using cuprous cyanide (CuCN), as in the conversion of 405 to benzonitrile derivative 407 via diazonium chloride, 406. [Pg.168]

The Bradsher reactionl49 jg a synthetic route that converts aryl ketones (234) to polycyclic hydrocarbons such as 235. This reaction can also be applied to heterocyclic derivatives of 234 (X = O, S, Se). A common route to ketones such as 234 is shown for the preparation of 240. Two of the aryl groups are incorporated by a Grignard reaction of aldehyde 236 with phenylmagnesium bromide, producing 237 in 81% yield. Subsequent treatment with cuprous cyanide (also see sec. 2.1 l.E) leads to nitrile 238, and reaction with ethylmagnesium bromide gives the ketone precursor (239). Subsequent reaction with HBr (reflux for four... [Pg.1096]

Examples of the three mechansims are, respectively (a) hydrolysis of aryl diazonium salts to phenols (b) reaction of aryl diazonium ions with Ns to give the aryl azides " and (c) the Sandmeyer reaction, involving cuprous chloride or bromide for synthesis of aryl halides. Specific synthetically important substitution processes are considered in the succeeding sections. [Pg.277]

In 1975, three different protocols were available in the literature, each describing the synthesis of internal alkynes. Cassar described palladium- or nickel-mediated reactions between aryl or vinyl halides and alkynes complexes with phosphine as ligands in the presence of NaOMe [1]. As a second protocol, Heck pubhshed a variation of the Mizoroki-Heck couplings, in which the olefins were replaced by alkynes and coupled with (hetero)aryl, as weU as alkenyl bromides or iodides at 100 °C in the presence of a basic amine [2]. More than a decade earUer, Stephens and Castro had described the details of a palladium-free coupling of aryl iodides with cuprous acetylides in refluxing pyridine [3]. [Pg.183]

Conversion of diazonium compounds to aryl chlorides, bromides, or cyanides is usually accomplished using cuprous salts, and is known as the Sandmeyer reaction. Since a CN group is easily converted to a CO2H group (eq. 10.13), this provides another route to aromatic carboxylic acids. The reaction with KI gives aryl iodides, usually not easily accessible by direct electrophilic iodination. Similarly, direct aromatic fluorination is difficult, but aromatic fluorides can be prepared from diazonium compounds and tetrafluoroboric acid, HBF4. [Pg.347]

Another common transformation of diazonium salts is their conversion to aryl halides by reaction with cuprous salts (CuX), in what is known as the Sandmeyer reaction, named after Traugott Sandmeyer (Switzerland 1854-1922). This means that the Ar-NH2 ArX conversion is possible, where Ar = an aryl group. When 132 is treated with cuprous bromide (CuBr), the product is bromobenzene (18). The reaction works with many other cuprous salts as well, including cuprous chloride (CuCl). A variation of this reaction treats the diazonirun salt with cuprous cyanide (CuCN) to give a nitrile. In this manner, 4-methylanihne (24) is treated with HCI and NaN02 and then with CuCN to give 4-methyl-l-cyanobenzene (134). [Pg.1074]

It has been known for a long time that the nucleophilic substitution of aromatic halides is strongly catalyzed by the presence of certain copper salts. Perhaps the most useful of the synthetic procedures based on this observation is the synthesis of aryl nitriles by reaction of aryl bromides with cuprous cyanide. The reaction is usually accomplished in dimethylformamide or a similar solvent. More recently. [Pg.407]

Treatment of diazonium salts with cuprous chloride or bromide leads to aryl chlorides or bromides, respectively. In either case the reaction is called the Sandmeyer reaction The reaction can also be carried out with copper and HBr or HCl, in which case it is called the Gatterman reaction (not to be confused with 11-16). The Sandmeyer reaction is not useful for the preparation of fluorides or iodides, but for bromides and chlorides it is of wide scope and is probably the best way of introducing bromine or chlorine into an aromatic ring. The yields are usually high. [Pg.936]

Replacement of the Diazonium Group by Chloride, Bromide, and Cyanide The Sandmeyer Reaction Copper salts (cuprous salts) have a special affinity for diazonium salts. Cuprous chloride, cuprous bromide, and cuprous cyanide react with arenediazonium salts to give aryl chlorides, aryl bromides, and aryl cyanides. The use of cuprous salts to replace arenediazonium groups is called the Sandmeyer reaction. The Sandmeyer reaction (using cuprous cyanide) is also an excellent method for attaching another carbon substituent to an aromatic ring. [Pg.912]

For the preparation of chlorides or bromides, the diazonium salt is decomposed with a solution of cuprous chloride or bromide in the corresponding halogen acid (Sandmeyer reaction). It is possible to prepare the aryl bromide from the diazonium chloride or sulfate. A variation Involves the use of copper powder and a mineral acid for the decomposition step (Gattermann reaction). Both procedures are illustrated by the syntheses of the isomeric bromotoluenes and chlorotoluenes. The usual conditions of the Sandmeyer reaction fail in the preparation of the chloro- and bromo-phenanthrenes. However, these compounds can be successfully obtained by the interaction of the diazonium compound with mercuric and potassium halides (Schwechten procedure). Another procedure for formation of aryl bromides involves treatment of the amine hydrobromide with nitrogen trioxide in the presence of excess 40% hydro-bromic acid. The Intermediate diazonium perbromide is then decomposed by heat. ... [Pg.52]

Aryl chlorides and bromides are prepared by reaction of an arenedia-jg zonium salt with the corresponding cuprous halide, CuX, a process calledH... [Pg.1004]

Meenvein reaction [1, 166, before references]. The arylation of olefinic com pounds by diazonium halides with copper salt catalysis was discovered by Meerweit (1939).8 Cupric chloride has been usually employed. Cleland,9 however, prefers cuprous bromide (MCB reagent grade) and recommends that the salt (light green) be washed with acetone until the washings are colorless and then with benzene and then with hexane. The resulting solid is dried at 120° and is only faintly colored. He... [Pg.49]

UUmann ether synthesis. The original Ullmann ether synthesis9 involved melting the salt of a phenol with an aryl bromide in the presence of copper metal. Yields are low. Williams et al.10 found that the reaction can be carried out at lower temperatures by using as solvent pyridine, which forms a complex with copper salts (cuprous chloride preferred), which provides catalysis for the reaction reflux temperature is then sufficient. [Pg.37]

Gabriel reaction. Review.1 The Gabriel reaction is ordinarily not applicable to aryl halides however, under catalysis with cuprous bromide or iodide and in boiling DMA (dimethylacetamide) as solvent, aryl bromides or iodides (but not chlorides) react with potassium phthalimide to give phthalimido compounds in >5-95% yield.2... [Pg.239]

Aryl bromides and iodides are usually prepared from diazonium salts by a copper-catalyzed process, a reaction commonly known as the Sandmeyer reaction. Under the classic conditions of the Sandmeyer reaction, the diazonium salt is added to a hot acidic solution of the cuprous halide.It is also possible to convert anilines to aryl halides by generating the diazonium ion in situ. Reaction of anilines with alkyl nitrites and cuprous halides in acetonitrile gives good yields of aryl bromides by a copper-mediated process which is mechanistically similar to that occurring under the usual Sandmeyer conditions. Diazonium salts can also be converted to... [Pg.396]


See other pages where Bromide cuprous, reaction with aryl is mentioned: [Pg.424]    [Pg.505]    [Pg.117]    [Pg.109]    [Pg.594]    [Pg.180]    [Pg.180]    [Pg.2471]    [Pg.27]    [Pg.1002]    [Pg.339]    [Pg.3192]    [Pg.39]    [Pg.174]   


SEARCH



Aryl bromides

Aryl bromides arylation

Aryl bromides reactions

Bromide reaction

Cuprous

Cuprous bromide

Reaction with bromides

© 2024 chempedia.info