Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Breaking colloids

Table 10.2 contains additional vocabulary relating to the thermodynamics of breaking colloids. [Pg.513]

If a dilute acid is added to this solution, a white gelatinous precipitate of the hydrated tin(IV) oxide is obtained. It was once thought that this was an acid and several formulae were suggested. However, it now seems likely that all these are different forms of the hydrated oxide, the differences arising from differences in particle size and degree of hydration. When some varieties of the hydrated tin(IV) oxide dissolve in hydrochloric acid, this is really a breaking up of the particles to form a colloidal solution—a phenomenon known as peptisation. [Pg.193]

In the process ia the center of Figure 17, complete hydrolysis is allowed to occur. Bases or acids are added to break up the precipitate iato small particles. Various reactions based on electrostatic iateractions at the surface of the particles take place the result is a colloidal solution. Organic binders are added to the solution and a physical gel is formed. The gel is then heat treated as before to form the ceramic membrane. [Pg.70]

The stabilization of water-oil emulsions happens as a result of the interfacial layers, which mainly consist of colloids present in the crude oil—asphaltenes and resins. By adding demulsifiers, the emulsion breaks up. With water-soluble... [Pg.326]

The typical viscous behavior for many non-Newtonian fluids (e.g., polymeric fluids, flocculated suspensions, colloids, foams, gels) is illustrated by the curves labeled structural in Figs. 3-5 and 3-6. These fluids exhibit Newtonian behavior at very low and very high shear rates, with shear thinning or pseudoplastic behavior at intermediate shear rates. In some materials this can be attributed to a reversible structure or network that forms in the rest or equilibrium state. When the material is sheared, the structure breaks down, resulting in a shear-dependent (shear thinning) behavior. Some real examples of this type of behavior are shown in Fig. 3-7. These show that structural viscosity behavior is exhibited by fluids as diverse as polymer solutions, blood, latex emulsions, and mud (sediment). Equations (i.e., models) that represent this type of behavior are described below. [Pg.67]

In its passage through a water column, a bubble acts as an interface between the liquid and vapour phases, and as such collects surface-active dissolved materials as well as colloidal micelles on its surface. Thus in a well-aerated layer of water, the upper levels will become progressively enriched in-surface-active materials. In the open ocean, an equilibrium undoubtedly exists between the materials carried downward by bubble injection from breaking waves and those carried upward by rising bubbles. In the laboratory, however, this effect will enrich the surface layer with organic materials. [Pg.365]

In this example, a simple mechanism for breaking a colloid was chosen. The eggshells are made of porous calcium carbonate, their surface covered with innumerable tiny pores. The particles of fat in the broth accumulate in these small pores. Removing the eggshells from the broth (each with oil particles adsorbed on their surfaces) removes the dispersed medium from the broth. One of the two components of the colloid is removed, preventing the colloid from persisting. [Pg.510]

The mechanical work of rubbing and kneading the hand cream breaks the colloid. The oil enters the skin - as desired - while the water remains on the skin surface before evaporating (hence the cooling effect mentioned above). [Pg.511]

The mechanical breaking of colloids is also essential when making butter from milk the solid from soured cream is churned extensively until phase separation occurs. The water-based liquid is drained away to yield a fat-rich solid, the butter. [Pg.512]

Larger particles of grit and dust settle relatively fast, but colloidal solids can require weeks for complete sedimentation (i.e. colloid breaking) to occur completely. Such sedimentation occurs when microscopic colloid particles approach, touch and stay together because of an attractive interaction, and thereby form larger particles, and sink under the influence of gravity. We call this process aggregation. [Pg.513]

But time is money. The waste industry, therefore, breaks the colloid artificially to remove the particulate solid from the water. They employ one of two methods. Firstly, they add to the water an inorganic polymer such as silicate. The colloid s thermodynamic stability depends on the surface of its particles, each of which has a slight excess charge. As like charges repel (in consequence of Coulomb s law ... [Pg.513]

For separation of colloidal particles and for breaking down emulsions, the ultra-centrifuge is used. This operates at speeds up to 30 rpm (1600 Hz) and produces a force of 100,000 times the force of gravity for a continuous liquid flow machine, and as high as 500,000 times for gas phase separation, although these machines are very small. The bowl is usually driven by means of a small air turbine. The ultra-centrifuge is often run either at low pressures or in an atmosphere of hydrogen in order to reduce frictional losses, and a fivefold increase in the maximum speed can be attained by this means. [Pg.499]

Other in vitro methods include the determination of the weight needed to break the adhesion [41], the fluorescent probe [35], the flow channel [42], mechanical spectroscopy [43], the falling film [44], colloidal gold staining [45], viscometiy [46], the thumb test [47], the adhesion number [47], and electrical conductance [47]. [Pg.204]


See other pages where Breaking colloids is mentioned: [Pg.169]    [Pg.491]    [Pg.1142]    [Pg.2143]    [Pg.41]    [Pg.311]    [Pg.757]    [Pg.767]    [Pg.346]    [Pg.25]    [Pg.835]    [Pg.85]    [Pg.23]    [Pg.237]    [Pg.243]    [Pg.428]    [Pg.586]    [Pg.175]    [Pg.160]    [Pg.399]    [Pg.118]    [Pg.258]    [Pg.510]    [Pg.510]    [Pg.511]    [Pg.511]    [Pg.512]    [Pg.513]    [Pg.514]    [Pg.113]    [Pg.476]    [Pg.480]    [Pg.323]    [Pg.52]    [Pg.180]   


SEARCH



© 2024 chempedia.info