Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Branching copolymerization

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Most Kaminsky catalysts contain only one type of active center. They produce ethylene—a-olefin copolymers with uniform compositional distributions and quite narrow MWDs which, at their limit, can be characterized by M.Jratios of about 2.0 and MFR of about 15. These features of the catalysts determine their first appHcations in the specialty resin area, to be used in the synthesis of either uniformly branched VLDPE resins or completely amorphous PE plastomers. Kaminsky catalysts have been gradually replacing Ziegler catalysts in the manufacture of certain commodity LLDPE products. They also faciUtate the copolymerization of ethylene with cycHc dienes such as cyclopentene and norhornene (33,34). These copolymers are compositionaHy uniform and can be used as LLDPE resins with special properties. Ethylene—norhornene copolymers are resistant to chemicals and heat, have high glass transitions, and very high transparency which makes them suitable for polymer optical fibers (34). [Pg.398]

Secondary Bonding. The atoms in a polymer molecule are held together by primary covalent bonds. Linear and branched chains are held together by secondary bonds hydrogen bonds, dipole interactions, and dispersion or van der Waal s forces. By copolymerization with minor amounts of acryhc (CH2=CHCOOH) or methacrylic acid followed by neutralization, ionic bonding can also be introduced between chains. Such polymers are known as ionomers (qv). [Pg.431]

Comonomers can be used to create a variety of polymer stmctures that can impart desirable properties. For example, even higher molecular weight PPS polymers can be produced by the copolymerization of a tri- or tetrafunctional comonomer (18). The resultant polymer molecules can have long-chain branching, which can be used to tailor the rheological response of the polymer to the appHcation. [Pg.444]

Issues to be considered in selecting the best stabilizing system are polymeric chain branching which increases with high temperature and the presence of some stabilizers, polydispersity of the particles produced, and grafting copolymerization, which may occur because of the reaction of vinyl acetate with emulsifiers such as poly(vinyl alcohol) (43,44). [Pg.464]

Other aspects of these copolymerizations were studied including some kinetic features, molecular weights (which were low), the extent of branching due to side reactions on the furan ring, and the characterization of the complex formed between 2-furaldehyde and BF3 Et20. [Pg.84]

Copolymerization of macromonomers formed by backbiting and fragmentation is a second mechanism for long chain branch formation during acrylate polymerization (Section 4.4.3.3). The extents of long and short chain branching in acrylate polymers in emulsion polymerization as a function of conditions have been quantified.20 ... [Pg.322]

PVAc is known to contain a significant number of long chain branches. Branches to the acetate methyl may arise by copolymerization of the VAe macromonomcr produced as a consequence of transfer to monomer (Section 6.2.6.2). Transfer to polymer may involve either the acetate methyl hydrogens (Scheme 6.34) or the methine (Scheme 6.35) or methylene hydrogens of the polymer backbone. [Pg.323]

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]

Copolymerization e.g., of 1-butene or 1-hexene with ethylene, gives short-chain branching-, e.g., the branches contain three or five carbon atoms. The random location of the side-chains lowers the crystallinity and density. Long-chain branching refers to branches that are similar in length to the polymer backbone and this type occurs in polyethylene manufactured using the... [Pg.469]

Indeed, cumyl carbocations are known to be effective initiators of IB polymerization, while the p-substituted benzyl cation is expected to react effectively with IB (p-methylstyrene and IB form a nearly ideal copolymerization system ). Severe disparity between the reactivities of the vinyl and cumyl ether groups of the inimer would result in either linear polymers or branched polymers with much lower MW than predicted for an in/mcr-mediated living polymerization. Styrene was subsequently blocked from the tert-chloride chain ends of high-MW DIB, activated by excess TiCU (Scheme 7.2). [Pg.202]

The basis of model calculations for copolymerization, branching and cross-linking processes is the stochastic theory of Flory and Stockmayer (1-3). This classical method was generalized by Gordon and coworkers with the more powerful method of probability generating functions with cascade substitution for describing branching processes (4-6). With this method it is possible to treat much more complicated reactions and systems (7-9). [Pg.213]

In this study computational results are presented for a six-component, three-stage process of copolymerization and network formation, based on the stochastic theory of branching processes using probability generating functions and cascade substitutions (11,12). [Pg.214]


See other pages where Branching copolymerization is mentioned: [Pg.570]    [Pg.129]    [Pg.129]    [Pg.570]    [Pg.129]    [Pg.129]    [Pg.61]    [Pg.367]    [Pg.379]    [Pg.400]    [Pg.403]    [Pg.315]    [Pg.434]    [Pg.528]    [Pg.516]    [Pg.464]    [Pg.481]    [Pg.563]    [Pg.327]    [Pg.321]    [Pg.490]    [Pg.537]    [Pg.633]    [Pg.730]    [Pg.64]    [Pg.91]    [Pg.211]    [Pg.252]    [Pg.334]    [Pg.597]    [Pg.602]    [Pg.446]    [Pg.446]    [Pg.51]    [Pg.69]    [Pg.107]    [Pg.126]    [Pg.869]    [Pg.871]    [Pg.110]   
See also in sourсe #XX -- [ Pg.260 , Pg.261 ]

See also in sourсe #XX -- [ Pg.260 , Pg.261 ]




SEARCH



© 2024 chempedia.info