Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron enolates, aldol reactions mediated

In 1974, Jeffery et al. reported the first use of well-defined dimeric or trimeric aluminum enolates in the aldol reaction. - Reaction of dimethyl-Z(0)-4,4-dimethylpent-2-en-2-oxyalane (123) with acetaldehyde or benzaldehyde provides the anti aldol products (124) as chelated dimers involving five-coordinate aluminum atoms, as shown in Scheme 51. However, the corresponding (0)-enolate (125) gives dimeric products of syn configuration which undergo isomerization, if not hydrolyzed immediately, to provide the same anti products. This syn-anti isomerization is much more facile with benzaldehyde, and is in sharp contrast to aldol reactions mediated by boron. [Pg.268]

Discovery of Aldol Reaction Mediated by Boron Enolates... [Pg.127]

The related serine derived (4S)-4-methoxycarbonyl-3-(l-oxopropyl)-2-thiono-l,3-oxazolidine 11, and the cysteine derived (4A)-4-methoxycarbonyl-3-(l-oxobntyl)-2-thiono-1,3-thiazolidine 13, also serve as efficient chiral auxiliaries in boron- and tin(II)-mediated aldol condensations98. Thus, conversion of 11 into the boron or tin enolate, followed by reaction with 2-methylpropanal affords predominantly one adduct. Subsequent methanolysis and chromatographic purification delivers the syu-methyl ester in 98% ee. [Pg.499]

In boron enolate-mediated aldol reactions, stoichiometric amounts of boron reagents are necessary. However, it has been reported that only a catalytic amount of a boron source is sufficient for boron enolate-mediated aldol reactions in water (Scheme 65).302 It should be noted that even water-sensitive boron enolates can be successfully employed in water. [Pg.427]

Double asymmetric induction (See section 1.5.3) can also be employed in aldol reactions. When chiral aldehyde 15 is treated with achiral boron-mediated enolate 14, a mixture of diastereomers is obtained in a ratio of 1.75 1. However, when the same aldehyde 15 is allowed to react with enolates derived from Evans auxiliary 8, a syn-aldol product 16 is obtained with very high stereo-... [Pg.139]

The aldol reactions introduced thus far have been performed under basic conditions where enolate species are involved as the reactive intermediate. In contrast to the commonly accepted carbon-anion chemistry, Mukaiyama developed another practical method in which enol species can be used as the key intermediates. He is the first chemist to successfully demonstrate that acid-catalyzed aldol reactions using Lewis acid (such as TiCU) and silyl enol ether as a stable enol equivalent can work as well.17 Furthermore, he developed the boron tri-fluoromethane sulfonate (triflate)-mediated aldol reactions via the formation of formyl enol ethers. [Pg.145]

Tandem processes mediated by triethylborane involving conjugate addition to enones followed by aldol reaction are reported (Scheme 52, Eq. 52a). More recently, a tandem process involving addition of an isopropyl radical to an o ,/3-unsaturated oxime ether afforded an azaenolate intermediate that reacts with benzaldehyde in the presence of trimethylaluminum. The aldol product cyclizes to afford an isopropyl substituted y-bulyroloaclonc in 61% overall yield (Scheme 52) [116]. In these reactions, triethylborane is acting as a chain transfer reagent that delivers a boron enolate or azaenolate necessary for the aldolization process. [Pg.108]

Dialkylboron trifluoromethanesulfonates (triflates) are particularly useful reagents for the preparation of boron enolates from carbonyl compounds, including ketones, thioesters and acyloxazolidinones.4 Recently, the combination of dicylohexylboron trifluoromethanesulfonate and triethylamine was found to effect the enolization of carboxylic esters.5 The boron-mediated asymmetric aldol reaction of carboxylic esters is particularly useful for the construction of anti (3-hydroxy-a-methyl carbonyl units.6 The present procedure is a slight modification of that reported by Brown, et al.2... [Pg.107]

Chlorodifluoromethylketones underwent aldol reactions (Eq. 124) via zinc enolates, to afford good yields of a,a-difluoro-/ -hydroxy ketones, in a study by the Kyoto group [327]. Copper(I) or silver salt catalysis was essential and boron-trifluoride additive appeared to exert a key role in the conversion to the enolate. Earlier [328], chlorodifluoromethyl ketones had been converted to the di-fluoroenoxy silanes by the action of zinc in the presence of chlorotrimethyl silane. A difluoroenoxy silane was used by McCarthy and co-workers [329] to synthesise a kynureninase inhibitor (Eq. 125) Lewis acid-mediated reaction with a chloroglycinate installed the key carbon-carbon bond. [Pg.176]

Modern Aldol Reactions contains several pertinent reviews (i) catalytic enantiose-lective aldols with chiral Lewis bases 97 (ii) the aldol-Tishchenko reaction 98 (iii) titanium—enolate aldols 99 (iv) crossed aldols mediated by boron and silicon enolates 100 (v) amine-catalysed aldols 101 and (vi) aldols catalysed by antibodies.102... [Pg.12]

Boron-mediated ketone-ketone aldol reactions have been described, using boron enolates formed with dicyclohexylboron chloride and triethylamine.124 Following addition of the acceptor ketone to form a boron aldolate, oxidation with peroxide yields the aldol product. [Pg.14]

In the total synthesis of (+)-trienomycins A and F, Smith et al. used an Evans aldol reaction technology to construct a 1,3-diol functional group8 (Scheme 2.1i). Asymmetric aldol reaction of the boron enolate of 14 with methacrolein afforded exclusively the desired xyn-diastereomer (17) in high yield. Silylation, hydrolysis using the lithium hydroperoxide protocol, preparation of Weinreb amide mediated by carbonyldiimidazole (CDI), and DIBAL-H reduction cleanly gave the aldehyde 18. Allylboration via the Brown protocol9 (see Chapter 3) then yielded a 12.5 1 mixture of diastereomers, which was purified to provide the alcohol desired (19) in 88% yield. Desilylation and acetonide formation furnished the diene 20, which contained a C9-C14 subunit of the TBS ether of (+)-trienomycinol. [Pg.62]

A kinetic study of the Ph2BOH-catalysed reactions of several aldehydes with 2 revealed that the rate of the disappearance of 2 followed first-order kinetics and was independent from the reactivity of the aldehydes used. Taking into account this result, we have proposed the reaction mechanism in which a silyl enol ether is transformed to the corresponding diphenylboryl enolate before the aldol addition step takes place (Scheme 13.1). The high diastereoselectivity is consistent with the mechanism, in which the aldol step proceeds via a chair-like six-membered transition state. The opposite diastereoselectivity in the reaction with the geometrical isomers of the thioketene silyl acetal shown in Table 13.3 also supports the mechanism via the boron enolate, because this trend was also observed in the classical boron enolate-mediated reactions in dry organic solvents. Although we have not yet observed the boron enolates directly under the reaction conditions, this mechanism can explain all of the experimental data obtained and is considered as the most reasonable one. As far as we know, this is the first example of... [Pg.277]

An effective control of the simple diastereoselectivity in boron-mediated aldol reactions of various propionate esters (162) was achieved by Abiko and coworkers (equation 45) °. They could show that under usual enolization conditions (dialkylboron triflate and amine) enol borinates are formed, which allowed the selective synthesis of 5yw-configured aldol products (Table 11). The enolization at low temperature (—78 °C) generated a (Z)-enolate selectively, which afforded mainly the syn diastereomer 164 after reaction with isobu-tyraldehyde (163), following a Zimmerman-Traxler transition-state. The anti diastereomer 164 instead was obtained only in small amounts (5-20%). [Pg.386]

Non-Evans Aldol Reactions. Either the syn- or onri-aldol adducts may be obtained from this family of imide-derived eno-lates, depending upon the specific conditions employed for the reaction. Although the illustrated boron enolate affords the illustrated jyn-aldol adduct in high diastereoselectivity, the addition reactions between this enolate and Lewis acid-coordinated aldehydes afford different stereochemical outcomes depending on the Lewis acid employed (eq 35). Open transition states have been proposed for the Diethylaluminum Chloride mediated, anti-selective reaction. These anfi-aldol reactions have been used in kinetic resolutions of 2-phenylthio aldehydes. ... [Pg.62]

Boron-mediated aldol reactions of -oxygenated methyl ketones are normally unselective, and chiral ligands are needed to achieve useful levels of control. However, as shown in Scheme 9-6, a Mukaiyama aldol reaction can be used where induction from silyl enol ether 13 is high, favouring adduct 14 [7, 8]. [Pg.253]


See other pages where Boron enolates, aldol reactions mediated is mentioned: [Pg.184]    [Pg.75]    [Pg.302]    [Pg.302]    [Pg.198]    [Pg.2235]    [Pg.302]    [Pg.325]    [Pg.603]    [Pg.272]    [Pg.137]    [Pg.232]    [Pg.65]    [Pg.208]    [Pg.121]    [Pg.219]    [Pg.220]    [Pg.221]    [Pg.224]    [Pg.231]    [Pg.352]    [Pg.298]    [Pg.66]    [Pg.305]    [Pg.63]    [Pg.193]    [Pg.8]    [Pg.162]   
See also in sourсe #XX -- [ Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 ]




SEARCH



Aldol reaction boron enolates

Aldols boron aldol reaction

Boron aldol

Boron aldolate

Boron enolate

Boron-mediated

Boronation reaction

Discovery of Aldol Reaction Mediated by Boron Enolates

Enolates aldol reactions

Enols aldol reactions

Mediation reaction

Reactions Boron

© 2024 chempedia.info