Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonds and bond breaking

Quantum Systems in Chemistry and Physics is a broad area of science in which scientists of different extractions and aims jointly place special emphasis on quantum theory. Several topics were presented in the sessions of the symposia, namely 1 Density matrices and density functionals 2 Electron correlation effects (many-body methods and configuration interactions) 3 Relativistic formulations 4 Valence theory (chemical bonds and bond breaking) 5 Nuclear motion (vibronic effects and flexible molecules) 6 Response theory (properties and spectra atoms and molecules in strong electric and magnetic fields) 7 Condensed matter (crystals, clusters, surfaces and interfaces) 8 Reactive collisions and chemical reactions, and 9 Computational chemistry and physics. [Pg.434]

Valence Theory Chemical Bonds and Bond Breaking... [Pg.10]

Valence theory Chemical bonds and bond breaking (Chair I. G. Kaplan)... [Pg.354]

Cyclizations of the 4-substituted-4,5-secocholest-5-enes (132) and (134), with stereospecific labelling of deuterium at C-7, afforded 5/S-cholest-6-enes (133) and (135), respectively. Loss of 7a-deuterium but retention of 7j8-deuterium established that for this 5e2 reaction the bond-forming (4,5-bond) and bond-breaking processes (C-7—H) occur in the syn relationship illustrated, as required by orbital symmetry considerations. ... [Pg.255]

Valence theory Chemical bonds and bond breaking (Chair /. G. Kaplan) Nuclear motion, vibronic effects, and flexible molecules (Chair J. Maruani) Response theory—Properties and spectra Atoms and molecules in strong electric and magnetic fields (Chair J. Gerratt)... [Pg.346]

When subjected to an electron bombardment whose energy level is much higher than that of hydrocarbon covalent bonds (about 10 eV), a molecule of mass A/loses an electron and forms the molecular ion, the bonds break and produce an entirely new series of ions or fragments . Taken together, the fragments relative intensities constitute a constant for the molecule and can serve to identify it this is the basis of qualitative analysis. [Pg.48]

Westwood and Hitch suggest, incidentally, that the cleavage experiment, not being fully reversible, may give only a bond-breaking or nearest-neighbor type of surface energy with little contribution from surface distortion. [Pg.280]

Unlike the solid state, the liquid state cannot be characterized by a static description. In a liquid, bonds break and refomi continuously as a fiinction of time. The quantum states in the liquid are similar to those in amorphous solids in the sense that the system is also disordered. The liquid state can be quantified only by considering some ensemble averaging and using statistical measures. For example, consider an elemental liquid. Just as for amorphous solids, one can ask what is the distribution of atoms at a given distance from a reference atom on average, i.e. the radial distribution function or the pair correlation function can also be defined for a liquid. In scattering experiments on liquids, a structure factor is measured. The radial distribution fiinction, g r), is related to the stnicture factor, S q), by... [Pg.132]

Schinke R and Huber J R 1993 Photodissociation dynamics of polyatomic molecules. The relationship between potential energy surfaces and the breaking of molecular bonds J. Rhys. Chem. 97 3463... [Pg.1090]

No molecule is completely rigid and fixed. Molecules vibrate, parts of a molecule may rotate internally, weak bonds break and re-fonn. Nuclear magnetic resonance spectroscopy (NMR) is particularly well suited to observe an important class of these motions and rearrangements. An example is tire restricted rotation about bonds, which can cause dramatic effects in the NMR spectrum (figure B2.4.1). [Pg.2089]

INORGANIC COMPLEXES. The cis-trans isomerization of a planar square form of a rt transition metal complex (e.g., of Pt " ) is known to be photochemically allowed and themrally forbidden [94]. It was found experimentally [95] to be an inhamolecular process, namely, to proceed without any bond-breaking step. Calculations show that the ground and the excited state touch along the reaction coordinate (see Fig. 12 in [96]). Although conical intersections were not mentioned in these papers, the present model appears to apply to these systems. [Pg.375]

The Car-Parrinello quantum molecular dynamics technique, introduced by Car and Parrinello in 1985 [1], has been applied to a variety of problems, mainly in physics. The apparent efficiency of the technique, and the fact that it combines a description at the quantum mechanical level with explicit molecular dynamics, suggests that this technique might be ideally suited to study chemical reactions. The bond breaking and formation phenomena characteristic of chemical reactions require a quantum mechanical description, and these phenomena inherently involve molecular dynamics. In 1994 it was shown for the first time that this technique may indeed be applied efficiently to the study of, in that particular application catalytic, chemical reactions [2]. We will discuss the results from this and related studies we have performed. [Pg.433]

The UIIF wnive fimction can also apply to singlet molecules. F sn-ally, the results are the same as for the faster RHF method. That is, electron s prefer to pair, with an alpha electron sh arin g a m olecu lar space orbital with a beta electron. L se the L lIF method for singlet states only to avoid potential energy discontinuities when a covalent bond Is broken and electron s can impair (see Bond Breaking on page 46). [Pg.37]

Quantum mechanical calculation of molecular dynamics trajectories can sim ulate bon d breakin g and frtrm ation.. Although you dt) n ot see th e appearance or disappearan ce ofhonds, you can plot the distan ce between two bonded atom s.. A distan ce excccdi n g a theoretical bond length suggests bond breaking. [Pg.90]

Concerted R-migration and 0-0 bond breaking, No loss of stereochemistry... [Pg.21]

The orbitals from which electrons are removed and those into which electrons are excited can be restricted to focus attention on correlations among certain orbitals. For example, if excitations out of core electrons are excluded, one computes a total energy that contains no correlation corrections for these core orbitals. Often it is possible to so limit the nature of the orbital excitations to focus on the energetic quantities of interest (e.g., the CC bond breaking in ethane requires correlation of the acc orbital but the 1 s Carbon core orbitals and the CH bond orbitals may be treated in a non-correlated manner). [Pg.493]

Coneerted ehemieal reaetions involving simultaneous bond breaking and forming, beeause to do so would require the foree-field parameters to evolve from those of the reaetant bonding to those for the produet bonding as the reaetion proeeeds ... [Pg.520]

The technique most often used (i.e., for an atom transfer) is to hrst plot the energy curve due to stretching a bond that is to be broken (without the new bond present) and then plot the energy curve due to stretching a bond that is to be formed (without the old bond present). The transition structure is next dehned as the point at which these two curves cross. Since most molecular mechanics methods were not designed to describe bond breaking and other reaction mechanisms, these methods are most reliable when a class of reactions has been tested against experimental data to determine its applicability and perhaps a suitable correction factor. [Pg.149]

At the other extreme is a trend toward the increasing use of orbital-based techniques, particularly QM/MM calculations (Chapter 23). These orbital-based techniques are needed to accurately model the actual process of chemical bond breaking and formation. [Pg.296]

Once a rubberband is stretched beyond its elastic region, it becomes much harder to stretch and soon breaks. At this point, the polymer chains are linear and more energy must be applied to slide chains past one another and break bonds. Thus, determining the energy required to break the material requires a different type of simulation. [Pg.312]

In contrast to the 4-hydroxy isomers, the thermally stable 5-hydroxy-THISs add to the C=C bond of cyclopropenylidenes (4. 18, 27. 28). The adducts eliminate carbonyl sulfide, and the strained bond breaks resulting in ring-expansion with formation of pyridin-4-ones. -thiones, or -imines. or 4-alkylidenedihydropvridines (20, X = 0. S.NR. or CRR ) (Scheme 19). [Pg.10]

The E2 mechanism is a concerted process m which the carbon-hydrogen and carbon-halogen bonds both break m the same elementary step What if these bonds break m separate steps s... [Pg.217]

Because the carbon-halogen bond breaks m the slow step the rate of the reaction depends on the leaving group Alkyl iodides have the weakest carbon-halogen bond and are the most reactive alkyl fluorides have the strongest carbon-halogen bond and are the least reactive... [Pg.219]

Whereas acid catalyzed hydrolysis of peptides cleaves amide bonds indiscriminately and eventually breaks all of them enzymatic hydrolysis is much more selective and is the method used to convert a peptide into smaller fragments... [Pg.1130]

If you specify a multiplicity of one (singlet), then you would most often choose the RHFmethod, unless the reactions result in bond breaking (see page 46). If the selected multiplicity is greater than one, then the system is open-shell and the usual choice is the UHF method, which uses different orbitals for electrons with different spins. [Pg.45]


See other pages where Bonds and bond breaking is mentioned: [Pg.1]    [Pg.434]    [Pg.323]    [Pg.375]    [Pg.268]    [Pg.1591]    [Pg.1758]    [Pg.1968]    [Pg.2189]    [Pg.2997]    [Pg.55]    [Pg.434]    [Pg.189]    [Pg.573]    [Pg.582]    [Pg.46]    [Pg.123]    [Pg.636]    [Pg.152]    [Pg.152]    [Pg.490]    [Pg.520]    [Pg.16]    [Pg.90]    [Pg.155]    [Pg.681]    [Pg.979]    [Pg.46]    [Pg.123]    [Pg.7]   
See also in sourсe #XX -- [ Pg.98 , Pg.101 , Pg.102 , Pg.105 , Pg.114 ]




SEARCH



Bond Breaking and Rearrangement

Bond breaking

Bond breaking and electron transfer

Bond formation and breaking

Bonds, breaking and making

Breaking a double bond completely periodate cleavage and ozonolysis

Chemical reactions breaking and making covalent bonds

Evidence for the Concertedness of Bond Making and Breaking

Models of Bond-Breaking Ion and Electron Transfer Reactions

© 2024 chempedia.info