Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonding polycarbonates

Ibid, A Thermoplastic Transparent Adhesive for Bonding Polycarbonate to Glass , Report No AMMRC CR-71-10, Contract DAAG46-71-... [Pg.811]

Polycarbonate Solvent cementing is the most common method of bonding polycarbonate. Bonding can be carried out with specific solvents, mixtures of solvents, and mixtures of polycarbonate and solvents. Methylene chloride, when used by itself, has an extremely fast evaporation rate and is recommended for fast assembly of polycarbonate parts. A solution of 1-5% polycarbonate resin in methylene chloride has a decreased evaporation rate. Parts bonded with methylene chloride are usable at elevated temperatures after approximately 48 hours, depending on the bonding area. Ethylene dichloride is also used (5). [Pg.269]

Glass window assembly Lens bonding Polycarbonate shield assembly... [Pg.779]

Solvent cementing is the most common method of bonding polycarbonate. It can be carried out with specific solvents (Table 9.6), mixtures of solvents, and mixtures of polycarbonate and solvents. [Pg.220]

Electronic component bonding Magnet bonding Polycarbonate hospital cabinets Bonding of pump parts... [Pg.241]

Figure 14.61 shows the constraction of a coin-type battery. The Li/(CF) cells are typically constracted with an anode of lithium foil roUed onto a collector and a cathode of Teflon-bonded polycarbon monofluoride and acetylene black on a nickel collector. Nickel-plated steel or stainless steel is used for the case material. The coin cells are crimped-sealed using a polypropylene gasket. [Pg.399]

In the automotive market, cyanoacrylates are used to bond weatherstripping to automotive bodies and to position rubber gaskets before assembly. They are used to bond polycarbonate positioning clips to side windows of automobiles, alternator horn assembly components, and rubber gaskets to automotive thermostats. One of the most common automotive applications is the use of cyanoacrylates in the repair of flexible PVC side trim strips. [Pg.470]

The high impact strength of these materials is ascribed to the p relaxation. It is assumed that the local stress concentration generated by the impact may be dissipated by the facile molecular motion avoiding the rupture of the polymer backbone bonds. Polycarbonate is exceptional in that it possesses a free volume which is 1.5 times greater than that observed for the majority of polymers. As... [Pg.586]

Phenol, in its various purity grades, is used for phenol—formaldehyde resins to bond constmction materials like plywood and composition board (40% of the phenol produced), for the bisphenol A employed in making epoxy resins (qv) and polycarbonate (qv) (30%), and for caprolactam (qv), the starting material for nylon-6 (20%). Minor amounts ate used for alkylphenols (qv) and pharmaceuticals (10). [Pg.364]

The melt viscosity of a polymer at a given temperature is a measure of the rate at which chains can move relative to each other. This will be controlled by the ease of rotation about the backbone bonds, i.e. the chain flexibility, and on the degree of entanglement. Because of their low chain flexibility, polymers such as polytetrafluoroethylene, the aromatic polyimides, the aromatic polycarbonates and to a less extent poly(vinyl chloride) and poly(methyl methacrylate) are highly viscous in their melting range as compared with polyethylene and polystyrene. [Pg.73]

It has, however, been possible to find solvents for some polar crystalline polymers such as the nylons, poly(vinyl chloride) and the polycarbonates. This is because of specific interactions between polymer and solvent that may often occur, for instance by hydrogen bonding. [Pg.86]

A more interesting example is given with PVC and the polycarbonate of bis-phenol A, both slightly crystalline polymers. It is noticed here that whilst methylene dichloride is a good solvent and tetrahydrofuran a poor solvent for the polycarbonate the reverse is true for PVC yet all four materials have similar solubility parameters. It would seem that the explanation is that a form of hydrogen bonding occurs between the polycarbonate and methylene dichloride and between PVC and tetrahydrofuran (Figure 5.7). In other words there is a specific interaction between each solvent pair. [Pg.86]

The latter equation contains constants with well-known values and can therefore be used to predict the fracture stress of most polymers. For example, the bond dissociation energy Do, is about 80 kcal/mol for a C-C bond. For polystyrene, the modulus E 2 GPa, A. 4, p = 1.2 g/cm, = 18,000, and we obtain the fracture stress, o A1 MPa, which compares well with reported values. Polycarbonate, with similar modulus but a lower M. = 2,400 is expected to have a fracture stress of about 100 MPa. In general, letting E 1 GPa, p = 1.0 g/cm, and Do — 335 kJ/mol, the tensile strength is well approximated by... [Pg.382]

While polymeric surfaces with relatively high surface energies (e.g. polyimides, ABS, polycarbonate, polyamides) can be adhered to readily without surface treatment, low surface energy polymers such as olefins, silicones, and fluoropolymers require surface treatments to increase the surface energy. Various oxidation techniques (such as flame, corona, plasma treatment, or chromic acid etching) allow strong bonds to be obtained to such polymers. [Pg.460]

SBR, polycarbonates, etc., can often be achieved by choosing a polyol backbone that is similar in polarity to the substrate to be bonded. For example, polyethers often work well for obtaining adhesion to these medium polarity plastics, whereas polyesters usually work better for polar substrates, such as glass and metal. [Pg.777]

Step-growth polymers, the second major class of polymers, are prepared by reactions between difunctional molecules, with the individual bonds in the polymer formed independently of one another. Polycarbonates are formed from a diester and a diol, and polyurethanes are formed from a diisocyanate and a diol. [Pg.1220]

The preceding results on polycarbonate are at variance with the ultrasonic degradation of poly(vinyl pyrollidone) prepared with peroxide linkages where the rate of chain cleavage was determined to be 5000 times faster at the — 0 — 0 — than the — C —C— bonds [164]. [Pg.151]

Fig. 50. Yield for chain scission as a function of strain rate for different fractions of polycarbonate (PC) in benzyl alcohol/dioxan (90 10 v.v) at 20 °C. A normal PC with Mp = 417000 B normal PC with Mp = 321000 C normal PC with Mp = 256000 D PC with weak bonds, Mp = 217000 Mp molecular weight at peak maximum sc critical strain rate for chain scission (extrapolated from the linear portion of the degradation curve)... Fig. 50. Yield for chain scission as a function of strain rate for different fractions of polycarbonate (PC) in benzyl alcohol/dioxan (90 10 v.v) at 20 °C. A normal PC with Mp = 417000 B normal PC with Mp = 321000 C normal PC with Mp = 256000 D PC with weak bonds, Mp = 217000 Mp molecular weight at peak maximum sc critical strain rate for chain scission (extrapolated from the linear portion of the degradation curve)...
Nearly all of the polymers produced by step-growth polymerization contain heteroatoms and/or aromatic rings in the backbone. One exception is polymers produced from acyclic diene metathesis (ADMET) polymerization.22 Hydrocarbon polymers with carbon-carbon double bonds are readily produced using ADMET polymerization techniques. Polyesters, polycarbonates, polyamides, and polyurethanes can be produced from aliphatic monomers with appropriate functional groups (Fig. 1.1). In these aliphatic polymers, the concentration of the linking groups (ester, carbonate, amide, or urethane) in the backbone greatly influences the physical properties. [Pg.4]

Carbonylation reactions encompass a diverse set of transformations used to synthesise many important high-value fine chemicals, synthetic intermediates and materials such as polycarbonates [36]. Palladium catalysts modified with PRj ligands facilitate these reactions. However, carbonylation often requires harsh conditions, especially for less reactive C-X bonds, thereby promoting catalyst degradation via P-C bond cleavage. The strength of the NHC bond may demonstrate the utility of... [Pg.225]

At this point, we will comment on how this procedure generalizes to other polymers. The other case that was considered by us [28,30,32,175,176] was concerned with bisphenol-A-polycarbonate (BPA-PC) (cf. Fig. 5.1). While for PE we had a correspondence that five chemical repeat units correspond to one effective bond of the bond fluctuation model, for BPA-PC the mapping ratio was inverse - one chemical repeat unit was mapped onto three effective bonds One must consider, however, the very different sizes of the chemical repeat units while for PE this is a single CH2 group, in BPA-PC the repeat unit involves 12 C-C or C-0 bonds along the backbone, and the end-to-end distance of the repeat unit is of the order of 10 A. Thus in this case also one effective bond corresponds to a group of four successive covalent bonds along the backbone of the chain, and a lattice unit corresponds to about 2.03 A [175],... [Pg.123]


See other pages where Bonding polycarbonates is mentioned: [Pg.744]    [Pg.467]    [Pg.807]    [Pg.554]    [Pg.744]    [Pg.467]    [Pg.807]    [Pg.554]    [Pg.72]    [Pg.408]    [Pg.411]    [Pg.260]    [Pg.331]    [Pg.333]    [Pg.5]    [Pg.45]    [Pg.362]    [Pg.489]    [Pg.62]    [Pg.572]    [Pg.564]    [Pg.553]    [Pg.41]    [Pg.432]    [Pg.150]    [Pg.5]    [Pg.11]    [Pg.222]    [Pg.136]    [Pg.137]   


SEARCH



Polycarbonate bonding, adhesive

© 2024 chempedia.info