Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure-property relationship block polymers

Heterocyclic block copolymers, 282-284 Heterocyclic diamines, rigid, 281 Heterocyclic polymers, structure-property relationships in, 273-274 Heterocyclic ring formation, PQ and PPQ synthesis by, 309-310 Hexadecyltrimethylammonium bromide (HTMAB), 549-550 Hexamethylene diisocyanate (HDI), 199, 210. See also HDI trimer Hexamethylenediamine-adipic acid salt, 169, 170... [Pg.585]

The interest in this type of copolymers is still very strong due to their large volume applications as emulsifiers and stabilizers in many different systems 43,260,261). However, little is known about the structure-property relationships of these systems 262) and the specific interactions of different segments in these copolymers with other components in a particular multicomponent system. Sometimes, minor chemical modifications in the PDMS-PEO copolymer backbone structures can lead to dramatic changes in its properties, e.g. from a foam stabilizer to an antifoam. Therefore, recent studies are usually directed towards the modification of polymer structures and block lengths in order to optimize the overall structure-property-performance characteristics of these systems 262). [Pg.46]

Recent developments in polymer chemistry have allowed for the synthesis of a remarkable range of well-defined block copolymers with a high degree of molecular, compositional, and structural homogeneity. These developments are mainly due to the improvement of known polymerization techniques and their combination. Parallel advancements in characterization methods have been critical for the identification of optimum conditions for the synthesis of such materials. The availability of these well-defined block copolymers will facilitate studies in many fields of polymer physics and will provide the opportunity to better explore structure-property relationships which are of fundamental importance for hi-tech applications, such as high temperature separation membranes, drug delivery systems, photonics, multifunctional sensors, nanoreactors, nanopatterning, memory devices etc. [Pg.131]

Honomer Selection. In practice the amide/blocked aldehyde precursor 1 (ADDA) proved more readily accessible than 2. The two forms were completely Interconvertible and equally useful as self-and substrate reactive crosslinkers (6). In our addition polymer systems, the acrylamide derivative 1 (R=CH3) provided a good blend of accessibility, physical properties, and ready copolymerizablllty with most commercially Important monomers. Structure/property relationships for other related monomers will be reported elsewhere. [Pg.459]

It is important to mention that the structure/properties relationships which will be discussed in the following section are valid for many polymer classes and not only for one specific macromolecule. In addition, the properties of polymers are influenced by the morphology of the liquid or solid state. For example, they can be amorphous or crystalline and the crystalline shape can be varied. Multiphase compositions like block copolymers and polymer blends exhibit very often unusual meso- and nano-morphologies. But in contrast to the synthesis of a special chemical structure, the controlled modification of the morphology is mostly much more difficult and results and rules found with one polymer are often not transferable to a second polymer. [Pg.144]

Advancements in synthetic polymer chemistry have allowed a remarkable range of new nonlinear block copolymer architectures to be synthesized. The result is a wide variety of new materials with the capacity to form self-assembled phases in bulk and in solution. At present our synthetic capabilities exceed our understanding, both theoretical and experimental, of the properties of such macro-molecular systems. We anticipate that a better understanding of structure-property relationships for these materials will lead to impressive new polymers with applications such as structural plastics, elastomers, membranes, controlled release agents, compatibilizers, and surface active agents. From the synthetic standpoint it seems likely that recent advances in living free radical polymerization will make the syntheses of many non-linear block copolymers more commercially appealing. [Pg.129]

The development of polypropylene copolymer multiphase systems is continuing at a robust pace. These polymer systems, based on simple and inexpensive polymer budding blocks, are being improved for applications historically reserved for more expensive engineering thermoplastics. The understanding of the structure/property relationships in polypropylene copolymers will indeed be a driver for further innovation in the commercial application of these polymers. [Pg.375]

Primary structure refers to the atomic composition and chemical structure of the monomer — the building block of the polymer chain. An appreciation of the nature of the monomer is fundamental to understanding the structure-property relationship of polymers. The chemical and electrical properties of a polymer are directly related to the chemistry of the constituent monomers. The physical and mechanical properties of polymers, on the other hand, are largely a consequence of the macromolecular size of the polymer, which in itself is related to the nature of the monomer. By definition, a polymer is a chain of atoms hooked together by primary valence bonds. Therefore, basic to understanding the structure of the monomer vis-a-vis the structure and properties of the resulting polymer is a fundamental understanding of ... [Pg.77]

The hydrogenation of cis-1,4 copolymers of B and I would lead to polyolefins with composition and sequence distribution consisting of ethylene (E) blocks and alternating ethylene/propylene (E/P) blocks. These novel polyolefins are difficult or almost impossible to obtain directly by simple polymerization of E and P monomers using any existing polymerization catalysts. Since structural variations in these polyolefins, such as composition aind monomer sequence distribution, would significantly affect the polyolefin properties, the hydrogenated cis-1,4 B/I copolymers with uniformly random distribution of E and E/P imits may serve as model polymers to study structure-property relationships and be useful as polymers with unique properties. [Pg.203]


See other pages where Structure-property relationship block polymers is mentioned: [Pg.132]    [Pg.63]    [Pg.63]    [Pg.75]    [Pg.166]    [Pg.693]    [Pg.1135]    [Pg.368]    [Pg.229]    [Pg.169]    [Pg.101]    [Pg.417]    [Pg.83]    [Pg.137]    [Pg.260]    [Pg.118]    [Pg.66]    [Pg.312]    [Pg.322]    [Pg.592]    [Pg.138]    [Pg.732]    [Pg.497]    [Pg.767]    [Pg.740]    [Pg.213]    [Pg.325]    [Pg.128]    [Pg.3560]    [Pg.57]    [Pg.63]    [Pg.26]    [Pg.285]    [Pg.84]    [Pg.289]    [Pg.291]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Block polymers

Block structure, polymers

Block structures

Block structuring

Blocking polymers

Properties block

Property relationships

STRUCTURAL PROPERTIES RELATIONSHIP

© 2024 chempedia.info