Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sequential polymerization, block copolymers

A brief review has appeared covering the use of metal-free initiators in living anionic polymerizations of acrylates and a comparison with Du Font s group-transfer polymerization method (149). Tetrabutylammonium thiolates mn room temperature polymerizations to quantitative conversions yielding polymers of narrow molecular weight distributions in dipolar aprotic solvents. Block copolymers are accessible through sequential monomer additions (149—151) and interfacial polymerizations (152,153). [Pg.170]

Block copolymers are synthesized by a variety of methods (45,46) most important are sequential polymeriza tion and step growth. In sequential polymerization, a polymer (A) is first synthesized in such a way that it contains at least one group per molecule that can initiate polymerization of another monomer B. [Pg.14]

Block copolymer—These copolymers are built of chemically dissimilar terminally connected segments. Block copolymers are generally prepared by sequential anionic addition or ring opening or step growth polymerization. [Pg.481]

An alternate way to make block copolymers involving PDMS blocks 124,125) is to have these chains fitted with epoxide functions at chain end, and to react them with a vinylic or dienic polymer carrying terminal COOH functions. Sequential addition of monomers has also been used, the ring opening polymerization of the cyclic trimer (D3) being initiated by the anionic site of a living polymer126). [Pg.167]

Though living anionic polymerization is the most widely used technique for synthesizing many commercially available TPEs based on styrenic block copolymers, living carbocationic polymerization has also been developed in recent years for such purposes [10,11], Polyisobutylene (PlB)-based TPEs, one of the most recently developed classes, are synthesized by living carbocationic polymerization with sequential monomer addition and consists of two basic steps [10] as follows ... [Pg.107]

Preparation and Reactions of S-b-MM. As mentioned in the introduction, we were interested in block copolymers of styrene and alkali metal methacrylates with overall molecular weights of about 20,000 and methacrylate contents on the order of 10 mol%. The preparation of such copolymers by the usual anionic techniques is not feasible. An alternative is to prepare block copolymers of styrene and methacrylic esters by sequential anionic polymerization, followed by a post-polymerization reaction to produce the desired block copolymers. The obvious first choice of methacrylic esters is methyl methacrylate. It is inexpensive, readily available, and its block copolymers with styrene are well-known. In fact, Brown and White have reported the preparation and hydrolyses of a series of S-b-MM copolymers of varying MM content using p-toluenesulfonic acid (TsOH) (6). The resulting methacrylic acid copolymers were easily converted to their sodium carboxylates by neutralization with sodium hydroxide. [Pg.284]

Sequential addition of different monomer charges to a living anionic polymerization system is useful for producing well-defined block copolymers. Thermoplastic elastomers of the triblock type are the most important commercial application. For example, a styrene-isoprene-styrene triblock copolymer is synthesized by the sequence... [Pg.18]

Polymer Synthesis and Characterization. This topic has been extensively discussed in preceeding papers.(2,23,24) However, we will briefly outline the preparative route. The block copolymers were synthesized via the sequential addition method. "Living" anionic polymerization of butadiene, followed by isoprene and more butadiene, was conducted using sec-butyl lithium as the initiator in hydrocarbon solvents under high vacuum. Under these conditions, the mode of addition of butadiene is predominantly 1,4, with between 5-8 mole percent of 1,2 structure.(18) Exhaustive hydrogenation of polymers were carried out in the presence of p-toluenesulfonylhydrazide (19,25) in refluxing xylene. The relative block composition of the polymers were determined via NMR. [Pg.122]

Random copolymers were obtained from the mixture of the two CoA esters in the presence of the polymerase, whereas block copolymers were synthesized when the two monomers were reacted sequentially with the enzyme. In the polymerization of racemic hydroxybutyryl CoA, only the (R)-monomer was polymerized. Furthermore, the presence of the (S)-monomer did not reduce the polymerization rate of the (R)-isomer. These data indicate that the (S)-mono-mer does not act as competitive inhibitor for the polymerase. [Pg.256]

Block copolymers comprised of PS and polymethacrylate blocks with aliphatic stearyl or decyl side groups were prepared by the sequential addition of monomers, as shown in Scheme 1. Styrene was polymerized in THF at - 78 °C using s-BuLi as the initiator [11,12]. The nucleophilicity of the living polystyryllithium was reduced by reaction with DPE (in order to avoid reactions with the carbonyl groups), followed by the polymerization of the methacrylate monomer. Stearyl methacrylate, SMA is associated with... [Pg.20]

Further work related to the synthesis of copolymers with either P2VP or P4VP blocks has been reported in the literature. Triblock terpolymers PS-fc-P2VP-fo-PEO were synthesized in THF at - 78 °C by sequential polymerization of styrene and 2VP, initiated by s-BuLi in the presence of IiCl [25]. The living polymer was terminated with EO. The end-hydroxyl group was... [Pg.25]

The direct synthesis of poly(3-sulfopropyl methacrylate)-fr-PMMA, PSP-MA-fr-PMMA (Scheme 27) without the use of protecting chemistry, by sequential monomer addition and ATRP techniques was achieved [77]. A water/DMF 40/60 mixture was used to ensure the homogeneous polymerization of both monomers. CuCl/bipy was the catalytic system used, leading to quantitative conversion and narrow molecular weight distribution. In another approach the PSPMA macroinitiator was isolated by stopping the polymerization at a conversion of 83%. Then using a 40/60 water/DMF mixture MMA was polymerized to give the desired block copolymer. In this case no residual SPMA monomer was present before the polymerization of MMA. The micellar properties of these amphiphilic copolymers were examined. [Pg.46]

Block copolymers produced from the sequential polymerization of exo-... [Pg.54]

Anionic polymerization and suitable Unking chemistry were employed for the synthesis of 3-arm PCHD-fc-PS star-block copolymers with PCHD either as the inner or the outer block (Scheme 77) [153]. The block copolymers were prepared by sequential addition of monomers. It was shown that the crossover reaction of either PSIi or PCHDLi was efficient and led to well-defined block copolymers. However, in the case of the PCHD-fc-PSLi copolymers, longer polymerization times were needed for long PCHD... [Pg.89]

Block copolymers of /3-PL and /3-BL have been synthesized using (251), although reaction times of several weeks are required.782 Since (TPP)Al-based carboxylates are also known to polymerize epoxides (see Section 9.1.7.2), the sequential addition of /3-BL and propylene oxide (PO) results in formation of a p(/3-BL-/3-PO) diblock.782 However, reversing the order of addition fails to produce the block copolymer since the propagating alkoxide (TPP)Al(OCHMeCH2)nCl does not initiate the ROP of /3-BL. [Pg.39]

A series of bis(phenoxide) aluminum alkoxides have also been reported as lactone ROP initiators. Complexes (264)-(266) all initiate the well-controlled ROP of CL, NVL.806,807 and L-LA.808 Block copolymers have been prepared by sequential monomer addition, and resumption experiments (addition of a second aliquot of monomer to a living chain) support a living mechanism. The polymerizations are characterized by narrow polydispersities (1.20) and molecular weights close to calculated values. However, other researchers using closely related (267) have reported Mw/Mn values of 1.50 and proposed that an equilibrium between dimeric and monomeric initiator molecules was responsible for an efficiency of 0.36.809 In addition, the polymerization of LA using (268) only achieved a conversion of 15% after 5 days at 80 °C (Mn = 21,070, Mn calc 2,010, Mw/Mn = 1.46).810... [Pg.41]

For the synthesis of carbohydrate-substituted block copolymers, it might be expected that the addition of acid to the polymerization reactions would result in a rate increase. Indeed, the ROMP of saccharide-modified monomers, when conducted in the presence of para-toluene sulfonic acid under emulsion conditions, successfully yielded block copolymers [52]. A key to the success of these reactions was the isolation of the initiated species, which resulted in its separation from the dissociated phosphine. The initiated ruthenium complex was isolated by starting the polymerization in acidic organic solution, from which the reactive species precipitated. The solvent was removed, and the reactive species was washed with additional degassed solvent. The polymerization was completed under emulsion conditions (in water and DTAB), and additional blocks were generated by the sequential addition of the different monomers. This method of polymerization was successful for both the mannose/galactose polymer and for the mannose polymer with the intervening diol sequence (Fig. 16A,B). [Pg.232]

The additional complexity present in block copolymer synthesis is the order of monomer polymerization and/or the requirement in some cases to modify the reactivity of the propagating center during the transition from one block to the next block. This is due to the requirement that the nucleophilicity of the initiating block be equal or greater than the resulting propagating chain end of the second block. Therefore the synthesis of block copolymers by sequential polymerization generally follows the order dienes/styrenics before vinylpyridines before meth(acrylates) before oxiranes/siloxanes. As a consequence, styrene-MMA block copolymers should be prepared by initial polymerization of styrene followed by MMA, while PEO-MMA block copolymers should be prepared by... [Pg.50]

Unlike in radical or anionic polymerizations, in ROMP with single-component metathesis catalysts the growing polymer chain remains able to further grow even after consumption of the monomer. This enables the manufacture of block copolymers with interesting physicochemical properties by sequential addition of different monomers to such living systems. [Pg.141]

Considerable effort has been carried out by different groups in the preparation of amphiphihc block copolymers based on polyfethylene oxide) PEO and an ahphatic polyester. A common approach relies upon the use of preformed co- hydroxy PEO as macroinitiator precursors [51, 70]. Actually, the anionic ROP of ethylene oxide is readily initiated by alcohol molecules activated by potassium hydroxide in catalytic amounts. The equimolar reaction of the PEO hydroxy end group (s) with triethyl aluminum yields a macroinitiator that, according to the coordination-insertion mechanism previously discussed (see Sect. 2.1), is highly active in the eCL and LA polymerization. This strategy allows one to prepare di- or triblock copolymers depending on the functionality of the PEO macroinitiator (Scheme 13a,b). Diblock copolymers have also been successfully prepared by sequential addition of the cyclic ether (EO) and lactone monomers using tetraphenylporphynato aluminum alkoxides or chloride as the initiator [69]. [Pg.22]


See other pages where Sequential polymerization, block copolymers is mentioned: [Pg.112]    [Pg.135]    [Pg.541]    [Pg.541]    [Pg.597]    [Pg.15]    [Pg.6]    [Pg.26]    [Pg.30]    [Pg.32]    [Pg.33]    [Pg.33]    [Pg.29]    [Pg.29]    [Pg.107]    [Pg.276]    [Pg.30]    [Pg.119]    [Pg.25]    [Pg.34]    [Pg.34]    [Pg.50]    [Pg.60]    [Pg.61]    [Pg.94]    [Pg.96]    [Pg.97]    [Pg.126]    [Pg.231]    [Pg.10]    [Pg.12]   
See also in sourсe #XX -- [ Pg.864 ]




SEARCH



Block copolymer formation during sequential polymerization

Block copolymer polymerization

Polymerization copolymers

Polymerization sequential

Sequential polymerization block copolymer formation

© 2024 chempedia.info