Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers network structure

Block copolymers with structures such as A—B or B—A—B are not thermoplastic elastomers, because for a continuous network to exist both ends of the elastomer segment must be immobilized in the hard domains. Instead, they are much weaker materials resembling conventional unvulcanized synthetic mbbers (4). [Pg.12]

Homopolymerization of macroazoinimers and co-polymerization of macroinimers with a vinyl monomer yield crosslinked polyethyleneglycol or polyethyleneglycol-vinyl polymer-crosslinked block copolymer, respectively. The homopolymers and block copolymers having PEG units with molecular weights of 1000 and 1500 still showed crystallinity of the PEG units in the network structure [48] and the second heating thermograms of polymers having PEG-1000 and PEG-1500 units showed that the recrystallization rates were very fast (Fig. 3). [Pg.730]

See also PBT degradation structure and properties of, 44-46 synthesis of, 106, 191 Polycaprolactam (PCA), 530, 541 Poly(e-caprolactone) (CAPA, PCL), 28, 42, 86. See also PCL degradation OH-terminated, 98-99 Polycaprolactones, 213 Poly(carbo[dimethyl]silane)s, 450, 451 Polycarbonate glycols, 207 Polycarbonate-polysulfone block copolymer, 360 Polycarbonates, 213 chemical structure of, 5 Polycarbosilanes, 450-456 Poly(chlorocarbosilanes), 454 Polycondensations, 57, 100 Poly(l,4-cyclohexylenedimethylene terephthalate) (PCT), 25 Polydimethyl siloxanes, 4 Poly(dioxanone) (PDO), 27 Poly (4,4 -dipheny lpheny lpho sphine oxide) (PAPO), 347 Polydispersity, 57 Polydispersity index, 444 Poly(D-lactic acid) (PDLA), 41 Poly(DL-lactic acid) (PDLLA), 42 Polyester amides, 18 Polyester-based networks, 58-60 Polyester carbonates, 18 Polyester-ether block copolymers, 20 Polyester-ethers, 26... [Pg.595]

Further modification of the above nanostructures is useful for obtaining new functional materials. Thirdly, we apply the dopant-induced laser ablation technique to site-selectively doped thin diblock copolymer films with spheres (sea-island), cylinders (hole-network), and wormlike structures on the nanoscale [19, 20]. When the dye-doped component parts are ablated away by laser light, the films are modified selectively. Concerning the laser ablation of diblock copolymer films, Lengl et al. carried out the excimer laser ablation of diblock copolymer monolayer films, forming spherical micelles loaded with an Au salt to obtain metallic Au nanodots [21]. They used the laser ablation to remove the polymer matrix. In our experiment, however, the laser ablation is used to remove one component of block copolymers. Thereby, we can expect to obtain new functional materials with novel nanostmctures. [Pg.205]

This multitude of properties the polymer must possess dictate that better polymer performance will be obtained from materials with complicated structures. Such polymers are complex polymers l) random copolymers, 2) block copolymers, 3) graft copolymers, 4) micellizing copolymers, and 5) network copolymers. There has been a dramatic increase in the past decade in the number and complexity of these copolymers and a sizable number of these new products have been made from natural products. The synthesis, analysis, and testing of lignin and starch, natural product copolymers, with particular emphasis on graft copolymers designed for enhanced oil recovery, will be presented. [Pg.181]

Reversible network structure is the single most important characteristic of a thermoplastic elastomer. This novel property generally arises from the presence of a phase-separated morphology in the bulk material which in turn is dictated by the molecular structure, often of a block copolymer nature. A wide variety of synthetic methods can, in principle, produce endless varieties of thermoplastic elastomers this fact coupled with the advantageous processing characteristics of these materials suggest that the use of thermoplastic elastomers will continue to grow in the 1980 s. [Pg.487]

Ordered body-centered cubic structures were observed by shearing aqueous gels made from anionic PtBS-PMANa block copolymer micelles [163]. The emergence of the ordered gel state could be accounted for similar building up of a polyelectrolyte-based fibrillar network that can be oriented under shear. [Pg.106]


See other pages where Block copolymers network structure is mentioned: [Pg.125]    [Pg.24]    [Pg.125]    [Pg.24]    [Pg.609]    [Pg.367]    [Pg.351]    [Pg.812]    [Pg.266]    [Pg.129]    [Pg.130]    [Pg.138]    [Pg.555]    [Pg.7]    [Pg.8]    [Pg.12]    [Pg.27]    [Pg.27]    [Pg.50]    [Pg.57]    [Pg.126]    [Pg.182]    [Pg.208]    [Pg.33]    [Pg.205]    [Pg.4]    [Pg.30]    [Pg.583]    [Pg.163]    [Pg.102]    [Pg.52]    [Pg.156]    [Pg.179]    [Pg.151]    [Pg.166]    [Pg.87]    [Pg.269]    [Pg.142]    [Pg.82]    [Pg.78]    [Pg.95]    [Pg.159]    [Pg.117]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Block copolymers structures

Block structures

Block structuring

Copolymers network

Network structure

Structural networks

Structure copolymers

© 2024 chempedia.info