Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers diblock polymers

Block copolymers are polymers constituted of at least two different monomers arranged in a specific manner - they could be diblock, triblock, multi-block, linear, star shaped, etc. Those based on styrene and butadiene, SB or SBS, are the earliest to be applied and studied, as well as the largest as far as the volume of production is concerned (Holden et al. 1967). [Pg.455]

Block copolymers are closer to blends of homopolymers in properties, but without the latter s tendency to undergo phase separation. As a matter of fact, diblock copolymers can be used as surfactants to bind immiscible homopolymer blends together and thus improve their mechanical properties. Block copolymers are generally prepared by sequential addition of monomers to living polymers, rather than by depending on the improbable rjr2 > 1 criterion in monomers. [Pg.434]

Block (Star) Arrangement. The known star polymers, like their linear counterparts, exhibit microphase separation. In general, they exhibit higher viscosities in the melt than their analogous linear materials. Their rheological behavior is reminiscent of network materials rather than linear block copolymers (58). Although they have been used as compatibiUzers in polymer blends, they are not as effective at property enhancements as linear diblocks... [Pg.184]

Block copolymer chemistry and architecture is well described in polymer textbooks and monographs [40]. The block copolymers of PSA interest consist of anionically polymerized styrene-isoprene or styrene-butadiene diblocks usually terminating with a second styrene block to form an SIS or SBS triblock, or terminating at a central nucleus to form a radial or star polymer (SI) . Representative structures are shown in Fig. 5. For most PSA formulations the softer SIS is preferred over SBS. In many respects, SIS may be treated as a thermoplastic, thermoprocessible natural rubber with a somewhat higher modulus due to filler effect of the polystyrene fraction. Two longer reviews [41,42] of styrenic block copolymer PSAs have been published. [Pg.479]

The earliest SIS block copolymers used in PSAs were nominally 15 wt% styrene, with an overall molecular weight on the order of 200,000 Da. The preparation by living anionic polymerization starts with the formation of polystyryl lithium, followed by isoprene addition to form the diblock anion, which is then coupled with a difunctional agent, such as 1,2-dibromoethane to form the triblock (Fig. 5a, path i). Some diblock material is inherently present in the final polymer due to inefficient coupling. The diblock is compatible with the triblock and acts... [Pg.480]

It is well known that block copolymers and graft copolymers composed of incompatible sequences form the self-assemblies (the microphase separations). These morphologies of the microphase separation are governed by Molau s law [1] in the solid state. Nowadays, not only the three basic morphologies but also novel morphologies, such as ordered bicontinuous double diamond structure, are reported [2-6]. The applications of the microphase separation are also investigated [7-12]. As one of the applications of the microphase separation of AB diblock copolymers, it is possible to synthesize coreshell type polymer microspheres upon crosslinking the spherical microdomains [13-16]. [Pg.601]

Thus, the spacing of the chains relative to the neutral, free, swollen size of the buoy blocks is, for a given chemical system and temperature, a unique function of the solvent-enhanced size asymmetry of the diblock polymer and a weak function of the effective Hamaker constant for adsorption. The degree of crowding of the nonadsorbing blocks, measured by a decrease in the left-hand side of Eq. 28, increases with increasing asymmetry of the block copolymer. [Pg.51]

Polystyrene-polytetrahydrofuran block copolymers121122 are an interesting case of coupling between functional polymers The mutual deactivation of living anionic polystyrene and living cationic polyoxolane occurs quantitatively to yield polystyrene-polyoxolane block copolymers. Since either of the initial polymer species can be mono- or difunctional, diblock, triblock or multiblock copolymers can be obtained. [Pg.166]

Vinyl copolymers contain mers from two or more vinyl monomers. Most common are random copolymers that are formed when the monomers polymerize simultaneously. They can be made by most polymerization mechanisms. Block copolymers are formed by reacting one monomer to completion and then replacing it with a different monomer that continues to add to the same polymer chain. The polymerization of a diblock copolymer stops at this point. Triblock and multiblock polymers continue the polymerization with additional monomer depletion and replenishment steps. The polymer chain must retain its ability to grow throughout the process. This is possible for a few polymerization mechanisms that give living polymers. [Pg.470]

Further modification of the above nanostructures is useful for obtaining new functional materials. Thirdly, we apply the dopant-induced laser ablation technique to site-selectively doped thin diblock copolymer films with spheres (sea-island), cylinders (hole-network), and wormlike structures on the nanoscale [19, 20]. When the dye-doped component parts are ablated away by laser light, the films are modified selectively. Concerning the laser ablation of diblock copolymer films, Lengl et al. carried out the excimer laser ablation of diblock copolymer monolayer films, forming spherical micelles loaded with an Au salt to obtain metallic Au nanodots [21]. They used the laser ablation to remove the polymer matrix. In our experiment, however, the laser ablation is used to remove one component of block copolymers. Thereby, we can expect to obtain new functional materials with novel nanostmctures. [Pg.205]

Another important class of copolymers synthesized by chain polymerisation are block (or sequenced) copolymers diblock and triblock copolymers being the most important ones. They are very useful as compatibilisers (emulsifiers) in immiscible polymer blends. Another major use is as thermoplastic elastomers. Both uses are best explained through the example of butadiene-styrene block copolymers. [Pg.52]

Several excellent books and review articles have been published covering this particular area of polymer science [1-3]. Nevertheless, this review will highlight recent (2000-2004) advances and developments regarding the synthesis of block copolymers with both linear (AB diblocks, ABA and ABC triblocks, ABCD tetrablocks, (AB)n multiblocks etc.) and non-linear structures (star-block, graft, miktoarm star, H-shaped, dendrimer-like, and cyclic copolymers). Attention will be given only to those synthetic methodologies which lead to well-defined and well-characterized macromolecules. [Pg.18]

Star-block copolymers are star polymers in which each arm is a block (diblock or triblock) copolymer. There are several methods used for the synthesis of star-block copolymers [142], and the most commonly used strategies are given in Scheme 67. [Pg.79]


See other pages where Block copolymers diblock polymers is mentioned: [Pg.285]    [Pg.30]    [Pg.485]    [Pg.84]    [Pg.123]    [Pg.243]    [Pg.641]    [Pg.94]    [Pg.128]    [Pg.454]    [Pg.482]    [Pg.467]    [Pg.415]    [Pg.183]    [Pg.183]    [Pg.482]    [Pg.483]    [Pg.566]    [Pg.744]    [Pg.595]    [Pg.597]    [Pg.51]    [Pg.66]    [Pg.6]    [Pg.300]    [Pg.3]    [Pg.516]    [Pg.208]    [Pg.272]    [Pg.205]    [Pg.30]    [Pg.30]    [Pg.119]    [Pg.127]    [Pg.131]    [Pg.498]    [Pg.92]    [Pg.149]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Block polymers

Blocking polymers

Diblock

Diblock copolymers

Polymer copolymers

Polymer diblock copolymer

Polymers block, diblock

© 2024 chempedia.info