Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymer elasticity

Blends with styrenic block copolymers improve the flexibiUty of bitumens and asphalts. The block copolymer content of these blends is usually less than 20% even as Httie as 3% can make significant differences to the properties of asphalt (qv). The block copolymers make the products more flexible, especially at low temperatures, and increase their softening point. They generally decrease the penetration and reduce the tendency to flow at high service temperatures and they also increase the stiffness, tensile strength, ductility, and elastic recovery of the final products. Melt viscosities at processing temperatures remain relatively low so the materials are still easy to apply. As the polymer concentration is increased to about 5%, an interconnected polymer network is formed. At this point the nature of the mixture changes from an asphalt modified by a polymer to a polymer extended with an asphalt. [Pg.19]

In 1978 Hiils (Mumcu et al ) described the properties of a block copolymer prepared by condensation of polytetramethylene ether glycol with laurin lactam and decane-1,10-dicarboxylic acid. The materials were introduced as XR3808 and X4006. The polyamide XR3808 is reported to have a specific gravity of 1.02, a yield stress of 24 MPa, a modulus of elasticity of 300 MPa and an elongation of break of 360%. The Swiss company Emser Werke also introduced similar... [Pg.526]

Various elastic elements are added to disposable sanitary products. Strands of lycra, natural rubber, polyurethane foam, and other elastic laminates are applied to provide good fit and avoid leakage. These are attached with adhesives. While non-PSA formulas such as polybutene-based [64] and polyamide [65] adhesives have shown utility, as well as benefits in terms of resistance to baby oils and lotions, adhesives based on styrenic block copolymers still dominate. SBC-based... [Pg.743]

The above equations gave reasonably reliable M value of SBS. Another approach to modeling the elastic behavior of SBS triblock copolymer has been developed [202]. The first one, the simple model, is obtained by a modification of classical rubber elasticity theory to account for the filler effect of the domain. The major objection was the simple application of mbber elasticity theory to block copolymers without considering the effect of the domain on the distribution function of the mbber matrix chain. In the derivation of classical equation of rabber elasticity, it is assumed that the chain has Gaussian distribution function. The use of this distribution function considers that aU spaces are accessible to a given chain. However, that is not the case of TPEs because the domain also takes up space in block copolymers. [Pg.138]

Styrene-butadiene-styrene (SBS) block copolymers are adequate raw materials to produce thermoplastic mbbers (TRs). SBS contains butadiene—soft and elastic—and styrene— hard and tough—domains. Because the styrene domains act as cross-links, vulcanization is not necessary to provide dimensional stability. TRs generally contain polystyrene (to impart hardness), plasticizers, fillers, and antioxidants processing oils can also be added. Due to their nature, TR soles show low surface energy, and to reach proper adhesion a surface modification is always needed. [Pg.762]

Anionic polymerization of polystyrene takes place very rapidly- much faster than free radical polymerization. When practiced on a large scale, this gives rise to heat transfer problems and limits its commercial practice to special cases, such as block copolymerization by living reactions. We employ anionic polymerization to make tri-block copolymer rubbers such as polystyrene-polybutadiene-polystyrene. This type of synthetic rubber is widely used in the handles of power tools, the soft grips of pens, and the elastic side panels of disposable diapers. [Pg.331]

The paper is organized in the following way In Section 2, the principles of quasi-elastic neutron scattering are introduced, and the method of NSE is shortly outlined. Section 3 deals with the polymer dynamics in dense environments, addressing in particular the influence and origin of entanglements. In Section 4, polymer networks are treated. Section 5 reports on the dynamics of linear homo- and block copolymers, of cyclic and star-shaped polymers in dilute and semi-dilute solutions, respectively. Finally, Section 6 summarizes the conclusions and gives an outlook. [Pg.3]

ABA-type triblock copolymerization of MMA/BuA/MMA should give rubberlike elastic polymers. The resulting copolymers should have two vitreous outer blocks, where the poly(MMA) moiety (hard segment) associates with the nodules, and the central soft poly(BuA) elastomeric block provides rubber elasticity. Ihara et al. [35] were the first to synthesize an AB-type block copolymer, with MMA (190 equivalents of initiator) first polymerized by... [Pg.70]

For example, a PE-fe-poly(ethylene-co-propylene) diblock composed of crystalline PE and amorphous ethylene/propylene copolymer segments was synthesized from ethylene and ethylene/propylene. The addition of MAO and Ti-FI catalyst 40 (Fig. 25) to an ethylene-saturated toluene at 25 °C resulted in the rapid formation of a living PE (Mn 115,000, MJMn 1.10). The addition of ethylene/propylene (1 3 volume ratio) to this living PE formed a PE-/>poly(ethylcnc-co-propylcnc) block copolymer (Mn 211,000, MJMn 1.16, propylene content 6.4 mol%) [30], As expected, the polymer exhibits a high Tm of 123 °C, indicating that this block copolymer shows good elastic properties at much higher temperatures than the conventional random copolymers of similar densities. [Pg.39]

Spandex Elastic fiber consisting of a block copolymer of a PU, hard segment, and a polyester or polyether, soft segment. [Pg.234]

Block copolymers based on nitrile rubber and on epoxy and phenolic resins and on polystyrene (50-54) have been intensively studied in Russia The generated block copolymers were investigated by turbidimetric and IR methods. Thermomechanical experiments were also run on fractions. As may be seen from Fig 13, fractions which combine the properties of the polymers (Curves 2,3, and 4) were obtained together with fractions characteristic of the raw rubber (Curve 1) and of the resin (Curve 5). The copolymer is soluble in solvents which are typical for both components. Solubility studies on the products showed that for any given ratio of the original components, 15 to 20% of the resin combines with the rubber. The properties of the block copolymer, however, depend on the initial ratio of components nitrile rubber confers elasticity and the phenolic resin processability. [Pg.32]

Thanks to their multiphase constitution, block copolymers have the originality to add advantageously the properties of their constitutive sequences. These very attractive materials can display novel properties for new technological applications. In this respect, thermoplastic elastomers are demonstrated examples (l, 2, 3) they are currently used without any modification as elastic bands, stair treads, solings in the footwear industry, impact resistance or flexibility improvers for polystyrene, polypropylene and polyethylene whereas significant developments as adhesives and adherends are to be noted (5.). [Pg.211]

Improvement of the mechanical properties of elastomers is usually reached by their reinforcement with fillers. Traditionally, carbon black, silica, metal oxides, some salts and rigid polymers are used. The elastic modulus, tensile strength, and swelling resistence are well increased by such reinforcement. A new approach is based on block copolymerization yielding thermoelastoplastics, i.e. block copolymers with soft (rubbery) and hard (plastic) blocks. The mutual feature of filled rubbers and the thermoelastoplastics is their heterogeneous structure u0). [Pg.68]


See other pages where Block copolymer elasticity is mentioned: [Pg.302]    [Pg.130]    [Pg.743]    [Pg.465]    [Pg.352]    [Pg.41]    [Pg.21]    [Pg.72]    [Pg.107]    [Pg.119]    [Pg.122]    [Pg.124]    [Pg.135]    [Pg.141]    [Pg.170]    [Pg.204]    [Pg.407]    [Pg.554]    [Pg.555]    [Pg.137]    [Pg.101]    [Pg.583]    [Pg.85]    [Pg.187]    [Pg.69]    [Pg.196]    [Pg.211]    [Pg.21]    [Pg.233]    [Pg.253]    [Pg.30]    [Pg.219]    [Pg.237]    [Pg.70]    [Pg.74]    [Pg.79]    [Pg.247]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Blocks elastic

Elasticity copolymers

© 2024 chempedia.info