Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biological membranes, function

The fundamental function of biological membranes is to separate components and to maintain different compositions of solutes in the separate spaces. Therefore, essentially every biological membrane functions in energy transduction. The maintenance of the different compositions in the two sides of the membrane is based on its functional asymmetry. The degree of asymmetry varies from uneven distribution of lipids in the bilayer up to absolute polarity of large protein complexes in the membrane. This asymmetry arises from the vectorial assembly of the individual protein complexes into the membranes in vivo where a high degree of specificity is maintained. [Pg.351]

Liposomes are considered as substantial models for the study of biological membranes. They have many physicochemical properties, such as membranes permeability, osmotic activity, interaction with various solutes, surface characteristics and chemical composition similar to cell membranes. The fluidity of their membranes and their self-closed structure are essential parameters for the study of the biological membrane function. [Pg.192]

The original work of Nuzzo and Allara [4] on the use of the strong interaction between gold surfaces and organosulfur compounds for monolayer construction opened the field of SAMs prepared by molecular self-assembly on metal substrates via formation of metal-thiolate (or disulfide or dialkyl sulfide) bonds [15]. The introduction of functional SAMs on metal substrates was a natural development that followed [10, 11]. Owing to the similarity with highly specialized biological membranes, functional SAMs are sometimes called artificial membranes. [Pg.6456]

V.A. Tverdislov, A.N. Tikhonov, and L.V. Yakovenko (1987), Physical and Chemical Mechanisms of Biological Membranes Functioning (in Russian), Moscow University Press, Moscow. [Pg.173]

Biological membranes provide the essential barrier between cells and the organelles of which cells are composed. Cellular membranes are complicated extensive biomolecular sheetlike structures, mostly fonned by lipid molecules held together by cooperative nonco-valent interactions. A membrane is not a static structure, but rather a complex dynamical two-dimensional liquid crystalline fluid mosaic of oriented proteins and lipids. A number of experimental approaches can be used to investigate and characterize biological membranes. However, the complexity of membranes is such that experimental data remain very difficult to interpret at the microscopic level. In recent years, computational studies of membranes based on detailed atomic models, as summarized in Chapter 21, have greatly increased the ability to interpret experimental data, yielding a much-improved picture of the structure and dynamics of lipid bilayers and the relationship of those properties to membrane function [21]. [Pg.3]

Long-chain polyisoprenoid. molecules with a terminal alcohol moiety are called, polyprenols. The dolichols, one class of polyprenols (Figure 8.18), consist of 16 to 22 isoprene units and, in the form of dolichyl phosphates, function to carry carbohydrate units in the biosynthesis of glycoproteins in animals. Polyprenyl groups serve to anchor certain proteins to biological membranes (discussed in Chapter 9). [Pg.252]

There are other ways in which the lateral organization (and asymmetry) of lipids in biological membranes can be altered. Eor example, cholesterol can intercalate between the phospholipid fatty acid chains, its polar hydroxyl group associated with the polar head groups. In this manner, patches of cholesterol and phospholipids can form in an otherwise homogeneous sea of pure phospholipid. This lateral asymmetry can in turn affect the function of membrane proteins and enzymes. The lateral distribution of lipids in a membrane can also be affected by proteins in the membrane. Certain integral membrane proteins prefer associations with specific lipids. Proteins may select unsaturated lipid chains over saturated chains or may prefer a specific head group over others. [Pg.266]

Ion-selective bulk membranes are the electro-active component of ion-selective electrodes. They differ from biological membranes in many aspects, the most marked being their thickness which is normally more then 105 times greater, therefore electroneutrality exists in the interior. A further difference is given by the fact that ion-selective membranes are homogeneous and symmetric with respect to their functioning. However, because of certain similarities with biomembranes (e.g., ion-selectivity order, etc.) the more easily to handle ion-selective membranes were studied extensively also by many physiologists and biochemists as model membranes. For this reason research in the field of bio-membranes, and developments in the field of ion-selective electrodes have been of mutual benefit. [Pg.220]

Chloride channels are membrane proteins that allow for the passive flow of anions across biological membranes. As chloride is the most abundant anion under physiological conditions, these channels are often called chloride channels instead of anion channels, even though other anions (such as iodide or nitrate) may permeate better. As some CLC proteins function as CF-channels, whereas other perform CF/H+-exchangers are also mentioned here. [Pg.371]

Kaprelyants, A., Suleimenov, M., Sorokina, A., Deborin, G., El-Registan, G., Stoyanovich, F., Lille, Yu., Ostrovsky, D. Structural-functional changes in bacterial and model membranes induced by phenolic lipids. Biological membranes, Vol.4, No.3, (March 1987), pp. 254-261, ISSN 0748-8653... [Pg.198]

Recently, unique vesicle-forming (spherical bUayers that offer a hydrophilic reservoir, suitable for incorporation of water-soluble molecules, as well as hydrophobic wall that protects the loaded molecules from the external solution) setf-assembUng peptide-based amphiphilic block copolymers that mimic biological membranes have attracted great interest as polymersomes or functional polymersomes due to their new and promising applications in dmg delivery and artificial cells [ 122]. However, in all the cases the block copolymers formed are chemically dispersed and are often contaminated with homopolymer. [Pg.126]

The use of Upid bilayers as a relevant model of biological membranes has provided important information on the structure and function of cell membranes. To utilize the function of cell membrane components for practical applications, a stabilization of Upid bilayers is imperative, because free-standing bilayer lipid membranes (BLMs) typically survive for minutes to hours and are very sensitive to vibration and mechanical shocks [156,157]. The following concept introduces S-layer proteins as supporting structures for BLMs (Fig. 15c) with largely retained physical features (e.g., thickness of the bilayer, fluidity). Electrophysical and spectroscopical studies have been performed to assess the appUcation potential of S-layer-supported lipid membranes. The S-layer protein used in aU studies on planar BLMs was isolated fromB. coagulans E38/vl. [Pg.369]

In a different context, a micropipette has been applied to monitor the current through a single-ion channel in a biological membrane. The patch-clamp technique invented by Sackmann and Neher [119] led to their Nobel Prize in medicine. The variations in channel current with voltage, concentration, type of ions, and type of channels have been explored. While the functions of specific channels, in particular their ionic selectivity, have been well known, only a handful of channels have the internal geometry and charge distribution determined. The development of a theory to interpret the mass of channel data and to predict channel action is still lacking. [Pg.643]

Myo-inositol is one of the most biologically active forms of inositol. It exists in several isomeric forms, the most common being the constituent of phospholipids in biological cell membranes. It also occurs as free inositol and as inositol hexaphosphate (IP6) also known as phytate which is a major source from food. Rice bran is one of the richest sources of IP6 as well as free inositol. Inositol is considered to belong to the B-complex vitamins. It is released in the gastrointestinal tract of humans and animals by the dephosphorylation of IP6 (phytate) by the intestinal enzyme phytase. Phytase also releases intermediate products as inositol triphosphate and inositol pentaphosphate. Inositol triphosphate in cellular membrane functions as an important intra- and intercellular messenger, that merits its value as a nutritional therapy for cancer. [Pg.360]

A close relationship exists between physicochemical properties of pigment molecules and their ability to be absorbed and thus to exhibit biological functions. Carotenoids are hydrophobic molecules that require a lipophilic environment. In vivo, they are found in precise locations and orientations within biological membranes. For example, the dihydroxycarotenoids such as lutein and zeaxanthin orient themselves perpendicularly to the membrane surface as molecular rivets in order to expose their hydroxyl groups to a more polar environment. [Pg.148]

The fluidity is one of the most vital properties of biological membranes. It relates to many functions involved in biological system, and effective biomembrane mimetic chemistry depends on the combination of both stability and mobility of the model membranes. However, in the polymerized vesicles the polymer chain interferes with the motion of the side groups and usually causes a decrease or even the loss of the fluid phases inside the polymerized vesicle (72,13). [Pg.291]

Gomez-Puyon, A., and C. Gomez-Lojero, The use of ionophores and channel formers in the study of the function of biological membranes, in Current Topics in Bioenergetics, Vol. 6, p. 221, Academic Press, New York, 1977. [Pg.464]

Carotenoids are hydrophobic molecules and thus are located in lipophilic sites of cells, such as bilayer membranes. Their hydrophobic character is decreased with an increased number of polar substitutents (mainly hydroxyl groups free or esterified with glycosides), thus affecting the positioning of the carotenoid molecule in biological membranes. For example, the dihydroxycarotenoids such as LUT and zeaxanthin (ZEA) may orient themselves perpendicular to the membrane surface as molecular rivet in order to expose their hydroxyl groups to a more polar environment. In contrast, the carotenes such as (3-C and LYC could position themselves parallel to the membrane surface to remain in a more lipophilic environment in the inner core of the bilayer membranes (Parker, 1989 Britton, 1995). Thus, carotenoid molecules can have substantial effects on the thickness, strength, and fluidity of membranes and thus affect many of their functions. [Pg.368]


See other pages where Biological membranes, function is mentioned: [Pg.224]    [Pg.144]    [Pg.865]    [Pg.144]    [Pg.36]    [Pg.35]    [Pg.330]    [Pg.74]    [Pg.224]    [Pg.144]    [Pg.865]    [Pg.144]    [Pg.36]    [Pg.35]    [Pg.330]    [Pg.74]    [Pg.2502]    [Pg.43]    [Pg.481]    [Pg.415]    [Pg.359]    [Pg.465]    [Pg.636]    [Pg.270]    [Pg.239]    [Pg.1157]    [Pg.362]    [Pg.575]    [Pg.321]    [Pg.223]    [Pg.727]    [Pg.774]    [Pg.819]    [Pg.435]    [Pg.444]    [Pg.453]    [Pg.559]    [Pg.287]    [Pg.85]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Biological functionalization

Biological membranes

Biology functional

Functional biological

Functionalized membrane

Functions biological

Membranes functions

Membranes, functional

Structure and Functions of Biological Membranes

© 2024 chempedia.info