Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biological columns

Biological columns are large-sized concrete or masonry structures, usually round with a gridded base. They are filled with filtration packing through which treated wastewater flows downstream (Fig. 4.25). [Pg.430]

The efficiency of a biological column is expressed in per cent of removed BOD5 ... [Pg.432]

Biological columns are classified according to the degree of loading, the construction, operation, etc. The most frequently used types can be categorized as follows ... [Pg.432]

At present, the most frequently used method of biological treatment is activation of wastewaters [1,3,6, 7]. In the activation tank, water is mixed with activated sludge. Whereas in the biological columns water flows through immobile microbial growth, in this case the activated component of the treatment, i.e. microorganisms, are dispersed in water in the form of acti-... [Pg.433]

The fir.-fit line of the file (see Figure 2-110) - the HEADER record - hold.s the moleculc. s classification string (columns 11-50), the deposition date (the date when the data were received by the PDB) in columns 51-59, and the PDB (Dcode for the molecule, which is unique within the Protein Data Bank, in columns 63-66. The second line - the TITLE record - contains the title of the experiment or the analysis that is represented in the entry. The subsequent records contain a more detailed description of the macromolecular content of the entiy (COMPND), the biological and/or chemical source ofeach biological molecule in the entiy (SOURCE), a set ofkeywords relevant to the entiy (KEYWDS). information about the experiment (EXPDTA), a list of people responsible for the contents of this entiy (.AUTHOR), a history of modifications made to this entiy since its release (REVDAT), and finally the primaiy literature citation that describes the experiment which resulted in the deposited dataset ()RNL). [Pg.115]

For example, the objects may be chemical compounds. The individual components of a data vector are called features and may, for example, be molecular descriptors (see Chapter 8) specifying the chemical structure of an object. For statistical data analysis, these objects and features are represented by a matrix X which has a row for each object and a column for each feature. In addition, each object win have one or more properties that are to be investigated, e.g., a biological activity of the structure or a class membership. This property or properties are merged into a matrix Y Thus, the data matrix X contains the independent variables whereas the matrix Ycontains the dependent ones. Figure 9-3 shows a typical multivariate data matrix. [Pg.443]

The aqueous layer from the ester column distillate, the raffinate from washing the ester, and the aqueous phase from the dehydration step are combined and distilled in the alcohol stripper. The wet alcohol distillate containing a low level of acrylate is recycled to the esterification reactor. The aqueous column bottoms are incinerated or sent to biological treatment. Biological treatment is common. [Pg.154]

Anhydrous hydrazine, required for propellant appHcations and some chemical syntheses, is made by breaking the hydrazine—water azeotrope with aniline. The bottom stream from the hydrate column (Fig. 4) is fed along with aniline to the azeotrope column. The overhead aniline—water vapor condenses and phase separates. The lower aniline layer returns to the column as reflux. The water layer, contaminated with a small amount of aniline and hydrazine, flows to a biological treatment pond. The bottoms from the azeotrope column consist of aniline and hydrazine. These are separated in the final hydrazine column to give an anhydrous overhead the aniline from the bottom is recycled to the azeotrope column. [Pg.282]

Not only may the cooling-tower plume be a source of fog, which in some weather conditions can ice roadways, but the plume also carries salts from the cooling water itself. These salts may come from salinity in the water, or may be added by the cooling-tower operator to prevent corrosion and biological attack in the column. [Pg.105]

For more specific analysis, chromatographic methods have been developed. Using reverse-phase columns and uv detection, hplc methods have been appHed to the analysis of nicotinic acid and nicotinamide in biological fluids such as blood and urine and in foods such as coffee and meat. Derivatization techniques have also been employed to improve sensitivity (55). For example, the reaction of nicotinic amide with DCCI (AT-dicyclohexyl-0-methoxycoumarin-4-yl)methyl isourea to yield the fluorescent coumarin ester has been reported (56). After separation on a reversed-phase column, detection limits of 10 pmol for nicotinic acid have been reported (57). [Pg.51]

Three-phase fluidized bed reactors are used for the treatment of heavy petroleum fractions at 350 to 600°C (662 to 1,112°F) and 200 atm (2,940 psi). A biological treatment process (Dorr-Oliver Hy-Flo) employs a vertical column filled with sand on which bacderial growth takes place while waste liquid and air are charged. A large interfacial area for reaction is provided, about 33 cmVcm (84 inVirr), so that an 85 to 90 percent BOD removal in 15 min is claimed compared with 6 to 8 h in conventional units. [Pg.2120]

Bi-functional radio-analytical scheme, based on exchange and extraction column chromatography, which provides the reliable information on molybdenum and uranium contents in biological materials has been elaborated. The contribution of uranium fission reaction has been strictly monitored. The uncertainty of the results of Mo determination by the presented method is very low. [Pg.193]

Joly observed elevated "Ra activities in deep-sea sediments that he attributed to water column scavenging and removal processes. This hypothesis was later challenged with the hrst seawater °Th measurements (parent of "Ra), and these new results conhrmed that radium was instead actively migrating across the marine sediment-water interface. This seabed source stimulated much activity to use radium as a tracer for ocean circulation. Unfortunately, the utility of Ra as a deep ocean circulation tracer never came to full fruition as biological cycling has been repeatedly shown to have a strong and unpredictable effect on the vertical distribution of this isotope. [Pg.48]


See other pages where Biological columns is mentioned: [Pg.430]    [Pg.432]    [Pg.432]    [Pg.432]    [Pg.433]    [Pg.435]    [Pg.34]    [Pg.430]    [Pg.432]    [Pg.432]    [Pg.432]    [Pg.433]    [Pg.435]    [Pg.34]    [Pg.552]    [Pg.724]    [Pg.57]    [Pg.168]    [Pg.182]    [Pg.337]    [Pg.379]    [Pg.380]    [Pg.275]    [Pg.525]    [Pg.51]    [Pg.245]    [Pg.251]    [Pg.251]    [Pg.41]    [Pg.62]    [Pg.91]    [Pg.99]    [Pg.104]    [Pg.1420]    [Pg.2227]    [Pg.121]    [Pg.272]    [Pg.378]    [Pg.28]    [Pg.81]    [Pg.368]    [Pg.504]    [Pg.560]   
See also in sourсe #XX -- [ Pg.430 , Pg.431 , Pg.432 ]




SEARCH



Biological Fluids Micro-Bore Column-Switching HPLC Determination of Drugs Eunmi Ban and Chong-Kook Kim

Biological bubble column

Biological columns (sprinkling filters)

Biological packed column

© 2024 chempedia.info