Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biocatalysts intermediate

However, in most cases enzymes show lower activity in organic media than in water. This behavior has been ascribed to different causes such as diffusional limitations, high saturating substrate concentrations, restricted protein flexibility, low stabilization of the enzyme-substrate intermediate, partial enzyme denaturation by lyophilization that becomes irreversible in anhydrous organic media, and, last but not least, nonoptimal hydration of the biocatalyst [12d]. Numerous methods have been developed to activate enzymes for optimal use in organic media [13]. [Pg.8]

Chiral epoxides and their corresponding vicinal diols are very important intermediates in asymmetric synthesis [163]. Chiral nonracemic epoxides can be obtained through asymmetric epoxidation using either chemical catalysts [164] or enzymes [165-167]. Biocatalytic epoxidations require sophisticated techniques and have thus far found limited application. An alternative approach is the asymmetric hydrolysis of racemic or meso-epoxides using transition-metal catalysts [168] or biocatalysts [169-174]. Epoxide hydrolases (EHs) (EC 3.3.2.3) catalyze the conversion of epoxides to their corresponding vicinal diols. EHs are cofactor-independent enzymes that are almost ubiquitous in nature. They are usually employed as whole cells or crude... [Pg.157]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

Applications of peroxide formation are underrepresented in chiral synthetic chemistry, most likely owing to the limited stability of such intermediates. Lipoxygenases, as prototype biocatalysts for such reactions, display rather limited substrate specificity. However, interesting functionalizations at allylic positions of unsaturated fatty acids can be realized in high regio- and stereoselectivity, when the enzymatic oxidation is coupled to a chemical or enzymatic reduction process. While early work focused on derivatives of arachidonic acid chemical modifications to the carboxylate moiety are possible, provided that a sufficiently hydrophilic functionality remained. By means of this strategy, chiral diendiols are accessible after hydroperoxide reduction (Scheme 9.12) [103,104]. [Pg.241]

In one of the above-mentioned cases [86], a significant improvement of reaction rates was observed when compared to the reactions carried out by uncoupled biocatalysts. This fact suggests that owing to the close proximity of the enzymes the local concentration of the intermediate is higher around the fused biocatalyst. [Pg.110]

Catalytic transformations can be divided on the basis of the catalyst-type - homogeneous, heterogeneous or enzymatic - or the type of conversion. We have opted for a compromise a division based partly on type of conversion (reduction, oxidation and C-C bond formation, and partly on catalyst type (solid acids and bases, and biocatalysts). Finally, enantioselective catalysis is a recurring theme in fine chemicals manufacture, e.g. in the production of pharmaceutical intermediates, and a separate section is devoted to this topic. [Pg.30]

Metabolic and enzyme engineering have received a lot of attention in academic institutions and are now being applied for the optimization of biocatalysts used in the production of a diverse range of products. Engineered microorganisms, even with non-native enzyme activities, are being used for novel products and process improvements for the production of precursors, intermediates and complete compounds, required in the pharmaceutical industry (Chartrain et ai, 2000). [Pg.164]

In a similar manner, and as shown again by the Faber group, the catalyzed reaction of bis-epoxides led to THFs containing four stereocenters [22]. Thus, treatment of cis,ds,weso-8-51 with the epoxide hydrolase Rhodococcus sp. CBS 71773 predominantly yielded the THF derivative 8-53a in 94% ee and 89% de, whereas the use of other biocatalysts has shown only low to moderate stereoselectivity (Scheme 8.14). As intermediate, the diol 8-52 can be assumed, whereby for the further transformation path A is always favored. [Pg.538]

Beside the use of a single enzyme, a cocktail of different biocatalysts can also be used in performing a domino process, provided that the enzymes do not interfere one with another. This approach was used by Scott and coworkers in the synthesis of precorrin-5 (8-61) (Scheme 8.16) [24]. Starting from 6-amino levulinic acid (ALA) 8-60, a mixture of eight different enzymes including the ALA-dehydratase to form porphobilinogen (PBG), as well as PBG deaminase and co-synthetase to furnish the tetracyclic uroporphyrinogen III (8-62) as intermediates, was employed to provide precorrin-5 (8-61) in 30% yield. [Pg.539]

Aside from the multifaceted chemical conversions, there are sources to develop into industrially viable microbial conversions. 1,2,4-Butanetriol, for example, used as an intermediate chemical for alkyd resins and rocket fuels, is currently prepared commercially from malic acid by high-pressure hydrogenation or hydride reduction of its methyl ester. In a novel environmentally benign approach to this chemical, wood-derived D-xylose is microbially oxidized to D-xylonic acid, followed by a multistep conversion to the product effected by a biocatalyst specially engineered by inserting Pseudomonas putida plasmids into E. coli ... [Pg.47]

Numerous biocatalytic routes to this challenging intermediate have been reported. " For example. Fox et al. have recently developed an efficient regioselective cyanation starting from low-cost epichlorohydrin (Scheme 1.26). Initial experiments found that halohydrin dehydrogenase from Agrobacterium radiobacter expressed in E. coli produced the desired product, but inefficiently. To meet the projected cost requirements for economic viability, the product needed to be produced at 100 g L with complete conversion and a 4000-fold increase in volumetric productivity. The biocatalyst needed to function under neutral conditions to avoid by-product formation, which causes downstream processing issues. [Pg.28]

One of the first major pharmaceutical biotransformations was the development of the synthesis of hydrocortisone in the late 1940s by whole-cell hydroxylation (Figure 2.2). Up until then a 40-step synthetic route developed by the Noble Prize winning chemist R.B.Woodward was the only source of this important drug substance and intermediate. Nowadays, a biocatalyst exists for the selective hydroxylation of every position on the steroid nucleus. ... [Pg.84]

The desymmetrization of l-alkylbicyclo[3.3.0]octane-2,8-diones can be achieved in a facile coenzyme-independent enzymatic reaction in buffer. Alkyl chains in the 1 -position of up to at least five carbon atoms are tolerated. The yields of the crude keto-acids are essentially quantitative, and the enantiotopic discrimination by the enzyme is usually excellent." Work remains to be done on the optimization of this biocatalyst with respect to protein stability and reaction engineering, but it remains a unique and intriguing possibility for the generation of interesting intermediates bearing multiple chiral centres. [Pg.343]

Aspergillus niger was the biocatalyst of choice for the biohydrolysis of para-nitrostyrene oxide (see above). A selective kinetic resolution using a crude enzyme extract of this biocatalyst followed by careful acidification of the cooled crude reaction mixture afforded the corresponding (i )-diol in high chemical yield (94%) and good ee (80%). This key intermediate could then be transformed via a four-step sequence (Scheme 11) into enantiopure (i )-nifenalol, a molecule with -blocker activity, which was obtained in 58% overall yield [88]. [Pg.163]

These engineered biocatalysts will in turn provide new means to efficiently utilize natural biopol3nners to synthesize chemical intermediates, fuels, food products, pharmaceuticals and plastics. New synthetic biocatalysts will allow the creation of a host of new biopol3nners possessing new functions and properties for industrial, pharmaceutical and agricultural uses. [Pg.381]


See other pages where Biocatalysts intermediate is mentioned: [Pg.339]    [Pg.48]    [Pg.184]    [Pg.262]    [Pg.51]    [Pg.262]    [Pg.6]    [Pg.80]    [Pg.141]    [Pg.150]    [Pg.191]    [Pg.232]    [Pg.240]    [Pg.327]    [Pg.136]    [Pg.137]    [Pg.182]    [Pg.203]    [Pg.375]    [Pg.379]    [Pg.379]    [Pg.380]    [Pg.42]    [Pg.283]    [Pg.283]    [Pg.286]    [Pg.52]    [Pg.63]    [Pg.87]    [Pg.57]    [Pg.69]    [Pg.71]    [Pg.153]    [Pg.462]    [Pg.42]    [Pg.67]   
See also in sourсe #XX -- [ Pg.340 ]




SEARCH



Biocatalyst

© 2024 chempedia.info