Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

BINAP cyclic substrates

Benzamido-cinnamic acid, 20, 38, 353 Benzofuran polymerization, 181 Benzoin condensation, 326 Benzomorphans, 37 Benzycinchoninium bromide, 334 Benzycinchoninium chloride, 334, 338 Bifiinctional catalysts, 328 Bifiinctional ketones, enantioselectivity, 66 BINAP allylation, 194 allylic alcohols, 46 axial chirality, 18 complex catalysts, 47 cyclic substrates, 115, 117 double hydrogenation, 72 Heck reaction, 191 hydrogen incorporation, 51 hydrogen shift, 100 hydrogenation, 18, 28, 57, 309 hydrosilylation, 126 inclusion complexes, oxides, 97 ligands, 19, 105 molecular structure, 50, 115 mono- and bis-complexes, 106 NMR spectra, 105 olefin isomerization, 96... [Pg.192]

The mechanism involving simple nitrogen-coordinated complexes also accounts for reactivities of certain sterically constrained systems. For instance, 3-(diethyamino)cyclohexene undergoes facile isomerization by the action of the BINAP-Rh catalyst (Scheme 18). The atomic arrangement of the substrate is ideal for the mechanism to involve a three-centered transition state for the C—H oxidative addition to produce the cyclometalated intermediate. The high reactivity of this cyclic substrate does not permit any other mechanisms that start from Rh-allylamine chelate complexes in which both the nitrogen and olefinic bond interact with the metallic center. On the other hand, fro/tt-3-(diethylamino)-4-isopropyl-l-methylcyclohexene is inert to the catalysis, because substantial I strain develops during the transition state of the C—H oxidative addition to Rh. [Pg.261]

Such dynamic kinetic resolutions can also be conducted on cyclic jS-keto esters. Two examples are shown in Equations 15.59 and 15.60. Such cyclic substrates contain a stereocenter at the carbon between the two carbonyl groups. Again, a dynamic kinetic resolution of these substrates by hydrogenation occurs selectively to form predominantly a single stereoisomer. This reaction occurs to form a 99 1 ratio of diaste-reomers and 93% enantioselectivity of the major diastereomer in the presence of a ruthenium-BINAP catalyst. The positions of the keto and ester functionalities can also be reversed. Reduction of the cyclic p-keto ester in Equation 15.60 generates, in this case, the cis diastereomer with high diastereoselectivity and enantioselectivity. ... [Pg.623]

Helmchen and coworkers employed a,co-amino-1,3-dienes as substrates [51]. By using palladium complexes with chiral phosphino-oxazolines L as catalysts, an enantiomeric excess of up to 80 % was achieved. In a typical experiment, a suspension of Pd(OAc)2, the chiral ligand L, the aminodiene 6/1-90 and an aryltriflate in dimethylformamide (DMF) was heated at 100 °C for 10 days. Via the chiral palladium complex 6/1-91, the resulting cyclic amine derivative 6/1-92 was obtained in 47% yield and 80% ee (Scheme 6/1.23). Using aryliodides the reaction time is shorter, and the yield higher (61 %), but the enantiomeric excess is lower (67% ee). With BINAP as a chiral ligand for the Pd°-catalyzed transformation of 6/1-90 and aryliodide, an ee-value of only 12% was obtained. [Pg.374]

With an increase of conversion, the enantiopurity of unreacted (S)-substrate increases and the diastereoselectivity of the product decreases. Using Ru-((S)-binap)(OAc)2, unreacted (S)-substrate was obtained in more than 99% ee and a 49 1 mixture of anti-product (37% ee (2R,iR)) at 76% conversion with a higher kR ks ratio of 16 1 [46]. In the case of a racemic cyclic allyl alcohol 24, high enantiopurity of the unreacted alcohol was obtained using Ru-binap catalyst with a high kR ks ratio of more than 70 1 [Eq. (16)] [46]. In these two cases, the transition state structure is considered to be different since the sense of dia-stereoface selection with the (S)- or the (R)-catalysts is opposite if a similar OH/ C=C bond spatial relationship is assumed. [Pg.692]

In the hydrogenation of cyclic / -keto esters (ketones substituted with an al-koxycarbonyl moiety), Ru(II)-binap reduced a racemic substrate in DCM with high anti-diastereoselectivity to give a 99 1 mixture of the trans-hydroxy ester (92% ee) and the ds-hydroxy ester (92% ee), quantitatively [Eq. (18)] [119, 120]. [Pg.697]

Cyclic imines 8 and 9 are intermediates or models of biologically active compounds and can be reduced with ee-values of 88 to 96% using Ti-ebthi, Ir-bcpm or Ir-binap in the presence of additives (entries 5.7, 5.9), as well as with the transfer hydrogenation catalyst Ru-dpenTs (entries 5.8, 5.10-5.12). As pointed out earlier, Ru-diphosphine-diamine complexes are also effective for imines, and the best results for 7 and 8a were 88% and 79% ee, respectively [36]. Azirines 10 are unusual substrates which could be transfer-hydrogenated with a catalyst prepared in situ from [RuCl2(p-cymene)]2 and amino alcohol L12, with ee-values of 44 to 78% and respectable TOFs of up to 3000 (entry 5.13). [Pg.1203]

The use of cyclic alkenes as substrates or the preparation of cyclic structures in the Heck reaction allows an asymmetric variation of the Heck reaction. An example of an intermolecular process is the addition of arenes to 1,2-dihydro furan using BINAP as the ligand, reported by Hayashi [23], Since the addition of palladium-aryl occurs in a syn fashion to a cyclic compound, the 13-hydride elimination cannot take place at the carbon that carries the phenyl group just added (carbon 1), and therefore it takes place at the carbon atom at the other side of palladium (carbon 3). The normal Heck products would not be chiral because an alkene is formed at the position where the aryl group is added. A side-reaction that occurs is the isomerisation of the alkene. Figure 13.20 illustrates this, omitting catalyst details and isomerisation products. [Pg.285]

BINAP-ruthcnium(II)-catalyzed hydrogenation of the racemic cyclic / -oxo ester, methyl 2-ox-ocyclopentanecarboxylate, was found to lead to alcohol 3, one of the four possible stereoisomers135. The reaction is both enantioselective (kinetic resolution) and diastereoselective. Since racemization of the substrate is sufficiently faster than hydrogenation, the yield of the hydroxy ester was almost quantitative. Whereas the relative configuration was probably clear from NMR spectra (not reported), the absolute configuration of 3 had to be determined (see p 438)135. [Pg.420]

These results, obtained with chiral substrates, agree with the general sense of enantioselective hydrogenation of prochiral 3-oxo carboxylic esters. Obviously, the chirality of the BINAP ligand controls the facial selectivity at the carbonyl function, whereas cyclic constraints determine the relative reactivities of the enantiomeric substrates. Sterically restricted transition states that lead to the major stereoisomers are shown in Scheme 66. Overall, one of four possible diastereomeric transition states is selected to afford high stereoselectivity by dynamic kinetic resolution that involves in situ racemization of the substrates. [Pg.242]

The reduction of lactam substrates containing proximal exo double bonds may be achieved in high e.e. as demonstrated by the reduction of 3-alkylidene-2-piperidones (Scheme 19)119. Cyclic amino acids may be prepared by, for example, asymmetric hydrogenation of 3 to 4 in up to 79% e.e.120 and the reduction of 5 to 6 in 99% e.e.121. In the latter case a number of chiral diphosphines were screened, and the best results were obtained using BINAP as a ligand with rhodium metal. Several other diphosphines, notably DuPHOS and DIOP, also performed well. The research group which produced... [Pg.797]

Indeed, the mechanism of these (salen)Mn catalysts activity is still of considerable controversy. Katsuki, for instance, who has focused recently on the reactivity of binap-derived catalysts (e.g., 6) with various cu-olefins [95SL827] as well as cyclic trisubstituted olefins [95SL197], maintains that all observations can be rationalized solely on the basis of steric and electronic steering of the substrate during the approach to the catalyst. According to... [Pg.46]

Independently, Yamamoto, Yanagisawa, and others reported the asymmetric aldol reaction using trimethoxysilyl enol ethers.19 The reaction was conducted with aldehydes and trimethoxysilyl enol ethers in the presence of Tol-BINAP-AgF to give the corresponding adducts with high enantioselectivities and diastereoselectiv-ities. They obtained vyra-aldol adducts as major products even when silyl enol ethers derived from cyclic ketones were used. Moreover, when a,(3-unsaturated aldehydes were employed as substrates, 1,2 adducts were obtained exclusively (Table 9.10). From an NMR study and correlation between the E Z ratio of the enol ethers and diastereoselectiviy, they proposed a cyclic transition state (Fig. 9.5). Thus, the reaction of E enol ethers proceeded via a boat form, whereas the reaction of Z enol ethers took place via a chair form. [Pg.273]


See other pages where BINAP cyclic substrates is mentioned: [Pg.241]    [Pg.310]    [Pg.827]    [Pg.661]    [Pg.75]    [Pg.456]    [Pg.296]    [Pg.64]    [Pg.32]    [Pg.33]    [Pg.54]    [Pg.58]    [Pg.395]    [Pg.469]    [Pg.815]    [Pg.872]    [Pg.1205]    [Pg.345]    [Pg.13]    [Pg.82]    [Pg.44]    [Pg.549]    [Pg.549]    [Pg.549]    [Pg.549]    [Pg.68]    [Pg.92]    [Pg.156]    [Pg.802]    [Pg.818]    [Pg.396]    [Pg.150]    [Pg.215]    [Pg.547]    [Pg.143]   
See also in sourсe #XX -- [ Pg.115 , Pg.117 ]




SEARCH



BINAP

BINAPs

Cyclic substrates

© 2024 chempedia.info